两个变量间的相关关系.★数学学习与物理学习★商业销售收入与广告之间★粮食产量与施肥量之间★人体脂肪含量与年龄之间哲学原理:世界是一个普遍联系的整体,任何事物都与其它事物相联系。数学地理解世界1、现实生活中存在许多相关关系:数学学习与物理学习,商品销售与广告、粮食生产与施肥量、人体的脂肪量与年龄等等的相关关系.•2、通过收集大量的数据,进行统计,对数据分析,找出其中的规律,对其相关关系作出一定判断..3、由于变量之间相关关系的广泛性和不确定性,所以样本数据应较大,和有代表性.才能对它们之间的关系作出正确的判断.探究:.年龄脂肪239.52717.83921.24125.9454927.526.35028.25329.65430.25631.45730.8年龄脂肪5833.56035.26134.6如上的一组数据,你能分析人体的脂肪含量与年龄之间有怎样的关系吗?从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现出“人体脂肪随年龄增长而增加”这一规律.而表中各年龄对应的脂肪数是这个年龄人群的样本平均数.我们也可以对它们作统计图、表,对这两个变量有一个直观上的印象和判断.下面我们以年龄为横轴,脂肪含量为纵轴建立直角坐标系,作出各个点,称该图为散点图。如图:O20253035404550556065年龄脂肪含量510152025303540从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的位置散布在从左下角到右上角的区域。称它们成正相关。但有的两个变量的相关,如下图所示:如高原含氧量与海拔高度的相关关系,海平面以上,海拔高度越高,含氧量越少。作出散点图发现,它们散布在从左上角到右下角的区域内。又如汽车的载重和汽车每消耗1升汽油所行使的平均路程,称它们成负相关.注:课本P86的思考.O我们再观察它的图像发现这些点大致分布在一条直线附近,像这样,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线,该直线叫回归方程。那么,我们该怎样来求出这个回归方程?请同学们展开讨论,能得出哪些具体的方案?20253035404550556065年龄脂肪含量0510152025303540..方案1、先画出一条直线,测量出各点与它的距离,再移动直线,到达一个使距离的和最小时,测出它的斜率和截距,得回归方程。20253035404550556065年龄脂肪含量0510152025303540如图:.方案2、在图中选两点作直线,使直线两侧的点的个数基本相同。20253035404550556065年龄脂肪含量0510152025303540方案3、如果多取几对点,确定多条直线,再求出这些直线的斜率和截距的平均值作为回归直线的斜率和截距。而得回归方程。如图我们还可以找到更多的方法,但这些方法都可行吗?科学吗?准确吗?怎样的方法是最好的?20253035404550556065年龄脂肪含量0510152025303540我们把由一个变量的变化去推测另一个变量的方法称为回归方法。回归直线实际上,求回归直线的关键是如何用数学的方法来刻画“从整体上看,各点到此直线的距离最小”.这样的方法叫做最小二乘法.人们经过实践与研究,已经找到了计算回归方程的斜率与截距的一般公式:xbyaxnxyxnxxxyyxxbniiniiiniiniiiy,)())((1221121以上公式的推导较复杂,故不作推导,但它的原理较为简单:即各点到该直线的距离的平方和最小,这一方法叫最小二乘法。(参看如书P80)一、相关关系的判断例1:5个学生的数学和物理成绩如下表:ABCDE数学8075706560物理7066686462画出散点图,并判断它们是否有相关关系。解:物理成绩50556065707580405060708090数学成绩由散点图可见,两者之间具有正相关关系。二、求线性回归方程例2:观察两相关变量得如下表:x-1-2-3-4-553421y-9-7-5-3-115379求两变量间的回归方程解1:列表:i12345678910-1-2-3-4-553421-9-7-5-3-1153799141512551512149xiyixiyi计算得:0,0yx110,1101011012yxxiiiii1010110010110101010122101iiiiixxyxyxb000bxbya∴所求回归直线方程为y=x^小结:求线性回归直线方程的步骤:第一步:列表;第二步:计算;第三步:代入公式计算b,a的值;第四步:写出直线方程。yxyxiiii,,yxxiniiniiyx112,,,总结基础知识框图表解变量间关系函数关系相关关系散点图线形回归线形回归方程1、相关关系(1)概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系。(2)相关关系与函数关系的异同点。相同点:两者均是指两个变量间的关系。不同点:函数关系是一种确定关系,是一种因果系;相关关系是一种非确定的关系,也不一定是因果关系(但可能是伴随关系)。(3)相关关系的分析方向。在收集大量数据的基础上,利用统计分析,发现规律,对它们的关系作出判断。2、两个变量的线性相关(1)回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析。通俗地讲,回归分析是寻找相关关系中非确定关系的某种确定性。(2)散点图A、定义;B、正相关、负相关。3、回归直线方程注:如果关于两个变量统计数据的散点图呈现发散状,则这两个变量之间不具有相关关系.3、回归直线方程(1)回归直线:观察散点图的特征,如果各点大致分布在一条直线的附近,就称两个变量之间具有线性相关的关系,这条直线叫做回归直线。(2)最小二乘法(3)利用回归直线对总体进行估计abxy求线性回归直线方程的步骤:第一步:列表;第二步:计算;第三步:代入公式计算b,a的值;第四步:写出直线方程。iiiiyxyx,,iniiniiyxxyx112,,,4、利用回归直线方程对总体进行估计例5炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系。如果已测得炉料熔化完毕时,钢水的含碳量X与冶炼时间y(从炉料熔化完毕到出刚的时间)的一列数据,如下表所示:x(0.01%)104180190177147134150191204121Y(min)100200210185155135170205235125(1)作出散点图,找规律。(2)求回归直线方程。(3)预测当钢水含碳量为160时,应冶炼多少分钟?