管理数量方法与分析复习资料

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

广东博导教育机构——广东省自考教育第一品牌学习提升能力第1页(共31页)知识改变命运《管理数量方法与分析》复习资料马智祥老师编写第1章数据分析的基础本章重点难点1.数据分组与变量数列2.分布中心与离散程度的测定3.偏度与峰度4.两个变量的相关关系学习目标重点掌握:1.数据分组与变量数列编制的方法及其应用;2.分布中心与离散程度指标的种类、测定方法及其应用;3.偏度、峰度以及相关系数的作用以及计算方法。能够理解:本章学习内容中的基本概念。一、选择题1.随机抽取某班级的10名男同学,测得其体重(单位Kg,从小到大排列)分别为56.0,59.2,61.4,63.1,63.7,67.5,73.5,78.6,80.0,86.5,则其中位数为()A.63.7B.67.5C.65.6D.65.12.下列说法正确的是()A.四分位全距和极差一样容易受极端变量值的影响B.四分位全距充分利用了所有数据的信息C.标准差的平方称为方差,用来描述变量分布的离散程度D.方差的平方称为标准差3.在对某项数据进行分析之前,我们应该做的前提工作是()A.数据的整理B.数据的检查C.数据的分组D.数据的搜集与加工处理4.在正态分布的情况下,算术平均数X中位数em众数0m之间的大小关系是()A.0mmXeB.0mmXeC.0mmXeD.emmX05.下列不属于离散程度的测量指标的是()A.极差B.期望C.方差D.四分位全距6.关于算术平均数的性质,下列说法正确的是()A.各变量值与算术平均数离差平方和最大B.各变量值与算术平均数离差的总和不等于零广东博导教育机构——广东省自考教育第一品牌学习提升能力第2页(共31页)知识改变命运C.变量线性变换的平均数等于变量平均数的线性变换D.n个相互独立的变量的代数和的平均数大于其平均数的代数和7.已知某班级高等数学期末考试成绩中位数为72分,算术平均数为69分,则该班级学生高等数学成绩的众数的近似值为()A.78分B.63分C.75分D.70.5分8.()指的是变量的取值分布密度曲线顶部的平坦程度或尖峭程度。A.偏度B.峰度C.四分位全距D.平均差9.在变量数列中,关于频率和频数的说法不正确的是()A.频数越大的组所对应的变量值对其平均水平的作用也越大B.频数越小的组所对应的变量值对其平均水平的作用也越小C.当对变量值求算术平均数时,频数看作为绝对数权数D.当对变量值求算术平均数时,频率看作为绝对数权数10.对于一列数据来说,其众数()A.一定存在B.可能不存在C.是唯一的D.是不唯一的11.某企业辅助工占80%,月平均工资为500元,技术工占20%,月平均工资为700元,该企业全部职工的月平均工资为()A.520元B.540元C.550元D.600元12.八位学生五月份的伙食费分别为(单位:元)360400290310450410240420则这8位学生五月份伙食费中位数为()A.360B.380C.400D.42013.如果一组数据分别为10,20,30和x,若平均数是30,那么x应为()A.30B.50C.60D.8014.在一次知识竞赛中,参赛同学的平均得分是80分,方差是16,则得分的变异系数是()A.0.05B.0.2C.5D.2015.若变量Y与变量X有关系式Y=3X+2,则Y与X的相关系数等于()A.-1B.0C.1D.316.当所有观察点都落在回归直线y=a+bx上,则x与y之间的相关系数为()A.r=0B.r2=1C.-1r1D.0r1参考答案题号12345678910答案CCDCBCABDB广东博导教育机构——广东省自考教育第一品牌学习提升能力第3页(共31页)知识改变命运题号111213141516答案BBCACB二、问答题1.在测量了变量的分布特征之后,测度变量之间的相关程度有何意义?测量指标有哪些?答:(P36)有时候掌握了变量的分布特征之后还不够,还需要了解变量之间相互影响的变动规律,以便对变量之间的相对关系进行深入研究。测度指标有协方差和相关系数。2.简述数学期望和方差各描述的是随机变量的什么特征。答:(P62、64)随机变量的期望值也称为平均值,它是随机变量取值的一种加权平均数,是随机变量分布的中心,它描述了随机变量取值的平均水平,而方差是各个数据与平均值之差的平方的平均数,方差用来衡量随机变量对其数学期望的偏离程度。3.在数据分布中离散程度测度的引入有何意义?答:(P25)研究变量的次数分布特征出来考察其取值的一般水平的高低外,还需要进一步考察其各个取值的离散程度。它是变量次数分布的另外一个重要特征。对其进行测定在实际研究中十分重要的意义:首先通过对变量取值之间离散程度的测定可以反映各个变量值之间的差异大小,从而也就可以反映分布中心指标对各个变量值代表性的高低。其次,通过对变量取值之间离散程度的测定,可以大致反映变量次数分布密度曲线的形状。4.在变量数列中引入偏度与峰度的概念有何意义?答:(P33)对变量次数分布的偏斜程度和峰尖程度进行测度,一方面可以加深人们对变量取值的分布情况的认识;另一方面人们可以将所关心的变量的偏度标值和峰度指标值与某种理论分布的偏度标值和峰度指标值进行比较,以判断所关心的变量与某种理论分布的近似程度,为进一步的推断分析奠定基础。5.什么是变量数列?答:(P2)在对变量取值进行分组的基础上,将各组不同变量值与其变量值出现的次数排列成的数列,就称为变量数列。三、选答题1.(1)运用算术平均数应注意什么问题?(2)在实际应用中如何有效地避免(1)中的问题。答:(P16)(1)运用算术平均数应注意:①算术平均数容易受到极端变量的影响。这是由于算术平均数是根据一个变量的全部变量值计算的,当一个变量的取值出现极小或者极大值,都将影响其计算结果的代表性。②权数对平均数大小起着权衡轻重的作用,但不取决于它的绝对值的大小,而是取决于它的比重。③根据组距数列求加权算术平均数时,需用组中值作为各组变量值的代表,它是假定各组内部的所有变量值是均匀分布的。(2)①为了提高算术平均数的代表性,需要剔除极增值,即对变量中的极大值或极小值进行剔除。②采用比重权数更能反映权数的实质,因为各组绝对数权数按统一比例变化,则不会影响平均数的大小。③注意组距数列计算的平均数在一般情况下只是一个近似值。2.(1)什么是洛伦茨曲线图?其主要用途有哪些?(2)简述洛伦茨曲线图的绘制方法。答:(P8-9)(1)累计频数(或频率)分布曲线;用来研究财富、土地和工资收入的分配是否公平。广东博导教育机构——广东省自考教育第一品牌学习提升能力第4页(共31页)知识改变命运(2)首先,将分配的对象和接受分配者的数量均化成结构相对数并进行向上累计;其次,纵轴和横轴均为百分比尺度,纵轴自下而上,用以测定分配的对象,横轴由左向右用以测定接受分配者;最后,根据计算所得的分配对象和接受分配者的累计百分数,在图中标出相应的绘示点,连接各点并使之平滑化,所得曲线即所要求的洛伦茨曲线。3.(1)简述分布中心的概念及其意义。(2)分布中心的测度指标有哪些?这些指标是否存在缺陷?答:(P12-13)(1)分布中心就是指距离一个变量的所有取值最近的位置,揭示变量的分布中心具有很重要的意义;首先变量的分布中心是变量取值的一个代表,可以用来反映其取值的一般水平。其次,变量的分布中心可以揭示其取值的次数分布的直角坐标系上的集中位置,可以用来反映变量分布密度曲线的中心位置。(2)分布中心常用的测度指标主要有算术平均数、中位数和众数。算术平均数容易受到极端变量值的影响,即当一个变量的取值出现极小值或者极大值时,都将影响其计算结果的代表性;众数表示数据的普遍情况,但没有平均数准确;中位数表示数据的中等水平,但不能代表整体。第2章概率与概率分析本章重点难点1.随机时间与概率;2.随机变量及其分布;3.随机变量的数字特征与独立性;4.大数定律与中心极限定理。学习目标重点掌握:1.随机事件概率的性质与计算;2.随机变量及其分布的性质与测定方法;3.随机变量数字特征及其测定方法。能够理解:概率与概率分析的相关概念、定义、定律和定理。了解:大数定律与中心极限定理的本质内容。一、选择题1.下列现象不属于随机现象的是()A.明天的天气状况B.投掷一颗骰子,上面的点数C.在标准大气压下,把水加热到100℃,水会沸腾D.下个月三星手机的销量2.已知X~N(2,1),则P{X2}=()A.0.5B.0C.1D.0.753.下列关于事件的概率的说法不正确的是(),其中A和B是对立事件。A.0≤P(A)≤1B.P(A)+P(B))≤1C.P(A∩B)=0D.P(AUB)=P(A)+P(B)4.若随机变量X在[1,5]上服从均匀分布,则其期望E(X)为()A.1B.2广东博导教育机构——广东省自考教育第一品牌学习提升能力第5页(共31页)知识改变命运C.3D.45.若随机变量X的分布律为P{X=k}=1/3(k=1,2,3),则其期望为()A.1B.2C.3D.46.若事件M与事件N互不相容,则有()A.P(MUN)=P(M)+P(N)B.P(MUN)=P(M)-P(N)C.P(MUN)=P(M)*P(N)D.P(M∩N)=P(M)+P(N)7.2个球中,1个是红球,1个是白球的概率为()A.1/5B.2/5C.1/3D.2/38.下列关于概率的说法,正确的是()A.事件M发生的概率0P(M)1B.若事件M确定发生,则P(M)=1C.事件M发生的概率0P(M)≤1D.若事件M不确定发生,则P(M)=09.A与B为互斥事件,则BA为()A.ABB.BC.AD.A+B10.设A、B为两个事件,则A-B表示()A.“A发生且B不发生”B.“A、B都不发生”C.“A、B都发生”D.“A不发生或者B发生”11.设A、B为两个事件,P(A)=0.5,P(A-B)=0.2,则P(AB)为()A.0.2B.0.3C.0.7D.0.812.袋中有红、黄、蓝球各一个,每一次从袋中任取一球,看过颜色后再放回袋中,共取球三次,颜色全相同的概率为()A.1/9B.1/3C.5/9D.8/913.北方大学统计系06级3班共有60名同学,至少有2名同学生日相同的概率为(一年按365天计算)()A.60365!60B.6060365365PC.!36560365PD.60603653651P14.如果事件A的概率为41)(AP,事件B的概率为41)(BP,下列陈述中一定正确的是()21)(.BAPA21)(.BBAP21)(.CBAP41)(.DBAP广东博导教育机构——广东省自考教育第一品牌学习提升能力第6页(共31页)知识改变命运15.如果事件A发生的概率6.0)(AP,事件B发生的概率4.0)(BP,并且已知AB,则)|(BAP()A.0.6B.0.4C.1D.016.天地公司下属3家工厂生产同一种产品,3家公司的次品率分别为0.01,0.02,0.015,而3家工厂的日产量分别为2000,1000,2000,则天地公司该产品的总次品率是()A.0.015B.0.014C.0.01D.0.0217.离散型随机变量X的分布律为:X-101概率41a41则a等于()A.1/4B.1/3C.1/2D.118.若某学校有两个分校,一个分校的学生占该校学生总数的60%,期末考试的平均成绩为75分,另一个分校的学生占学生总数的40%,期末考试的平均成绩为77分,则该校学生期末考试的总平均成绩为()分。A.76B.75.8C.75.5D.76.519.若随机变量Y与X的关系为Y=3X-2,并且随机变量X的方差为2,则Y的方差D(Y)为()A.6B.12C.18D.3620.一个二项分布随机变量的方差与数学期望之比为1/5,则该分布的参数p应为()A.1/5B.2/5C.3/5D.4/521.某保险业务员每六次访问有一次成功地获得签单(即签单成功的概率是1/6),在一个正常的工作周内,他分别与36个客户进行了联系,则该周签单数的数学期望是()A

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功