材料科学基础-名词解释

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

材料科学基础名词解释(上海交大第二版)第一章原子结构结合键结合键分为化学键和物理键两大类,化学键包括金属键、离子键和共价键;物理键即范德华力。化学键是指晶体内相邻原子(或离子)间强烈的相互作用。金属键金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。离子键阴阳离子之间通过静电作用形成的化学键叫作离子键共价键由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。范德华力是借助临近原子的相互作用而形成的稳定的原子结构的原子或分子结合为一体的键合。氢键氢与电负性大的原子(氟、氧、氮等)共价结合形成的键叫氢键。近程结构高分子重复单元的化学结构和立体结构合称为高分子的近程结构。它是构成高分子聚合物最底层、最基本的结构。又称为高分子的一级结构远程结构由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构第二章固体结构1、晶体:原子在空间中呈有规则的周期性重复排列的固体物质。晶体熔化时具固定的熔点,具有各向异性。2、非晶体:原子是无规则排列的固体物质。熔化时没有固定熔点,存在一个软化温度范围,为各向同性。3、晶体结构:原子(或分子、离子)在三维空间呈周期性重复排列,即存在长程有序。4、空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。5、阵点:把实际晶体结构看成完整无缺的理想晶体,并将其中的每个质点抽象为规则排列于空间的几何点,称之为阵点。6、晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单基本元(最小平行六面体)作为点阵的组成单元,称为晶胞。7、晶系:根据六个点阵参数间的相互关系,将全部空间点阵归属于7中类型,即7个晶系,分别为三斜、单斜、正交、六方、菱方、四方和立方。13、晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。属于此晶带的晶面称为共带面。14、晶面间距:晶面间的距离。18、点群:点群是指一个晶体中所有点对称元素的集合。19、空间群:用以描述晶体中原子组合所有可能的方式,是确定晶体结构的依据,它是通过宏观和微观对称元素在三维空间的组合而得出的。20、晶胞原子数:一个晶胞体积内的原子数。21、点阵常数:晶胞的大小一般是由晶胞的棱边长度来衡量的,它具有表征晶体结构的一个重要基本参数。22、配位数:指晶体结构中任一原子周围最近邻且等距离的原子数。23、致密度:指晶体结构中原子体积占总体积的百分数。24、多晶型:有些固态金属在不同的温度和压力下具有不同的晶体结构,即具有多晶型,转变产物为同素异形体。25、合金:指由两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。26、相:指合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分。27、固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀固态溶体,它保持着溶剂的晶体结构类型。28、中间相:两组元A和B组成合金时,除了可形成以A为基或以B为基的固溶体(端际固溶体)外,还可能形成晶体结构与A,B两组元不同的新相,由于它们在二元相图上位置总是位于中间,故通常把这些相称为中间相。29、置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。30、间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体。31、有限固溶体:金属元素彼此之间形成有限溶解的称为有限固溶体。32、无限固溶体:金属元素彼此之间能形成无限溶解的称为无限固溶体。33、无序固溶体:溶质原子统计式分布在溶剂晶格的结点上,它们或占据着与溶剂原子等同的位置,或占据着溶剂原子间隙的位置,看不出有什么次序性或规律性,这类固溶体叫无序固溶体。34、有序固溶体:有些固溶体结构在高温时形成无序固溶体,但在缓慢冷却或低温退火时,溶质原子按适当比例并按一定顺序和方向,围绕着溶质原子重新排列.使溶质,溶剂原子在晶格中占据一定的位置,这一过程称为固溶体的有序化.溶质和溶剂原子呈有序排列的固溶体称为有序固溶体或称超结构:35、正常价化合物:在元素周期表中,一些金属与电负性较强的IVA,VA,VIA族的一些元素按照化学上的原子价规律所形成的化合物称为正常价化合物。36、电子化合物:电子化合物是由第一族或过渡族元素与第二至第四元素构成的化合物,他们不遵守化合价规律,但满足一定的电子浓度,虽然电子化合物可用化学式表示,但实际成分可在一定的范围变动,可溶解一定量的固溶体。38、间隙相:原子半径较小的非金属元素如C,H,N,B等可与金属元素(主要是过渡族金属),当非金属X和金属M原子半径比小于0.59时,形成具有简单晶体结构的相,称为间隙相。39、间隙化合物:原子半径较小的非金属元素如C,H,N,B等可与金属元素(主要是过渡族金属),当非金属X和金属M原子半径大于0.59时,形成具有复杂晶体结构的相,通常称为间隙化合物。第三章晶体缺陷点缺陷:点缺陷是最简单的晶体缺陷,它是在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷。其特征是在三维空间的各个方向上尺寸都很小,尺寸范围约为一个或几个原子尺寸,故称零维缺陷,包括空位、间隙原子、杂质或溶质原子等。线缺陷:其特征是在两个方向上尺寸很小,另外一个方向上延伸较长,也称一维缺陷,如各类位错。面缺陷:其特征是在一个方向尺寸上很小,另外两个方向上扩展很大,也称二维缺陷,晶界、相界、孪晶界和堆垛层错都属于面缺陷。空位:一个原子具有足够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作用,跳离其原来的位置,使点阵中形成空结点。间隙原子:从空位中跳离,挤入点阵的空隙位置的原子。刃型位错:一种位错在晶体中有一个刀刃状的多余半原子面的位错形式。螺型位错:原来与位错线相垂直的品而都将由平而变成螺旋的一种位错形式。混合位错:滑移矢量既不平行也不垂直于位错线,而与位错线相交成任意角度的位错。全位错:把伯氏矢量等于点阵矢量或其整数倍的位错称为“全位错”不全位错:柏氏矢量不等于点阵矢量的不全位错。柏氏回路:在实际晶体中,西欧那个任一原子出发,围绕位错(避开位错线附近的严重畸变区)以一定的步数作一右旋闭合回路,称为柏氏回路。柏氏矢量:通常将形成一个位错的晶体的相移矢量定义为该位错的柏氏矢量,用b表示。柏氏矢量的物理意义:同一晶体中,位错的柏氏矢量愈大,位错强度也愈大,表明该位错导致的点阵畸变愈严重,它所具有的能量也愈高。柏氏矢量的守恒性:不论所做柏氏回路的大小、形状、位置如何变化,怎样任意扩大、缩小或移动,只要它不与其他位错线相交,对给定的位错所确定的柏氏矢量是一定的。位错的滑移:在外加应力作用下,通过位错中心附近的原子沿柏氏矢量方向在滑移面上不断地作少量的位移的过程。交滑移:当某一螺型位错在原滑移面上受阻时,从滑移面转移到与之相交的另一滑移面上的过程叫做交滑移。位错的攀移:刃型位错在垂直于滑移面的方向上运动,把多余半原子面向上或向下运动的过程。位错的交割:一个位错在某一滑移面上运动时,会与穿过滑移面的其他位错发生相互作用的过程。割阶:垂直于位错滑移面得曲折滑移曲线。扭折:在滑移面上的曲折滑移曲线。位错密度:单位体积晶体中所含的位错线的总长度。位错增殖:晶体在受力过程中,位错发生运动,位错数目增加,位错密度变大的过程。扩展位错:通常把一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错组称为扩展位错。层错能:层错破坏晶体的完整结构和争产的周期性,使电子发生反常的衍射效应,使晶体增加的能量。扩展位错交滑移:位错束集呈全螺型位错,然后再由该全位错滑移到另一个滑移面上的过程。晶界:属于同一固相但位向不同的晶粒之间的界面称为晶界。亚晶界:相邻亚晶粒之间的界面称为亚晶界。晶界能:形成单位面积界面时系统的自由能变化。孪晶界:两个晶体沿一个公共晶面构成晶面对称的位向关系,这两个晶体的公共晶面就称为孪晶面。相界:具有不同结构的两相之间的分界面称为相界。按结构特点,相界面可分为共格相界、半共格相界和非共格相界三种类型。第四章固体中原子及分子的运动质量浓度单位体积混合物中某组分的质量称为该组分的质量浓度。扩散物质分子从高浓度区域向低浓度区域转移,直到均匀分布的现象。间隙扩散原子从一个晶格中间隙位置迁移到另一个间隙位置。空位扩散通过空位进行跳动的扩散称为空位扩散。下坡扩散物质从高浓度向低浓度的扩散。上坡扩散物质从低浓度向高浓度的扩散。稳态扩散质量浓度不随时间变化而变化的扩散称为稳态扩散。非稳态扩散质量浓度随时间变化而变化的扩散称为非稳态扩散。扩散系数扩散系数是描述物质扩散难易程度的重要参量。扩散通量表示单位时间内通过垂直于扩散方向x的单位面积的扩散物质质量。(J表示)表面扩散在样品自由表面发生的扩散称为表面扩散。第五章材料的形变和再结晶1、弹性变形:指外力去除后能够完全恢复的那部分,可从原子间结合力的角度来了解它的物质本性。2、弹性模量:材料(金属、陶瓷和部分高分子材料)不论是加载还是卸载时,只要在弹性形变的比称为弹性模量。3、包申格效应::材料经预先加载产生少量塑性变形(小于4%),而后通向加载则σ升高,反向加载则σ下降,此现象称之为包申格效应。4、弹后效应:一些实际晶体,在加载或卸载时,应变不是瞬时达到其平衡,而是通过一种驰豫过程来完成其变化,在弹性极限σ范围内,应变滞后于外加应力,并和时间有关的现象称为弹性后效或弹滞性。5、粘弹性:一些晶体,有时甚至多晶体,在比较小的应力时可以同时表现出弹性和黏性,这就是黏弹性现象。6、塑性变形:应力超过弹性极限,材料发生塑性变形,即产生不可逆的永久变形。孪生:孪生是塑性变形的另一种形式,它常作为滑移不易进行时的补充。孪晶面:发生均匀切变的那组晶面称为孪晶面(即(111面))。孪生方向:孪生面的移动方向称为孪生方向。孪晶:变形与未变形两部分晶体合称为孪晶。扭折:在孪生过程中阻力很大,如果继续增大压力,则为了使晶体的形状与外力相适应,当外力超过某一临界值时晶体将会产生局部弯曲,这种变形方式称为扭折。固溶强化:溶质原子的存在及其固溶度的增加,使基体金属的变形抗力随之提高。加工硬化:金属材料经过另加工变形后,强度(硬度)显著提高,而塑性则很快下降,即产生了加工硬化现象。弥散强化:当第二相以细小弥散的微粒均匀分布于基体当中时,将会产生显著的强化作用,称为弥散强化。形变织构:在塑性变形中,随着形变程度的增加,各个晶粒的滑移面和滑移方向都要向主形变方向转动,逐渐使多晶体中原来取向互不相同的各个晶粒在空间取向上呈现一定程度的规律性,这一现象称为择优取向,这种组织状态则称为形变织构。回复:回复是一种形核和长大过程,是指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。再结晶:是指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程。晶粒长大:晶粒长大是指再结晶结束之后晶粒的继续长大。冷加工:而把再结晶温度以下而又不加热的加工称为冷加工。热加工:工程上常将再结晶温度以上的加工称为热加工。动态再结晶:热加工时,由于变形温度高于再结晶温度,故在变形的同时伴随着再结晶过程。再结晶温度:冷变形金属开始进行再结晶的最低温度称为再结晶温度。临界变形量:在给定温度下发生再结晶需要一个最小变形量(临界变形度)低于此变形度,不发生再结晶。再结晶织构:通常具有变形织构的金属经再结晶后的新晶粒仍具有择优取向,称为再结晶织构。第六章单组元相图及纯晶体的凝固结晶:原子由不规则排列状态过渡到规则排列状态的过程。结构起伏:液态结构中原子排列长程无序,短程有序,并且短程有序原子集团不是固定不变的结构,这种现象称为结构起伏。能量起伏:能量起伏是指体系中每个微小体积所实际具有的能量,会偏离体系平均能量水平而瞬时涨落的现象过冷度:熔点与实际凝固温度T之差。均匀形核:新相晶核是在母相中均匀生产的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外边面的影响。非均匀形核:新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外表面来形核

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功