概率与统计知识点与题型3.1.1—3.1.2随机事件的概率及概率的意义1、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。3.2.1—3.2.2古典概型及随机数的产生1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。(2)古典概型的解题步骤;①求出总的基本事件数;②求出事件A所包含的基本事件数,然后利用公式P(A)=总的基本事件个数包含的基本事件数A3.3.1—3.3.2几何概型及均匀随机数的产生1、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P(A)=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A;(1)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.一、随机变量.1.随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2.离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a,b是常数.则ba也是一个随机变量.一般地,若ξ是随机变量,)(xf是连续函数或单调函数,则)(f也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为:,,,,21ixxxξ取每一个值),2,1(1ix的概率iipxP)(,则表称为随机变量ξ的概率分布,简称ξ的分布列.1x2x…ix…P1p2p…ip…有性质①,2,1,01ip;②121ippp.注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[即可以取0~5之间的一切数,包括整数、小数、无理数.3.⑴二项分布:如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是:knkknqpCk)P(ξ[其中pqnk1,,,1,0]于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作~B(n·p),其中n,p为参数,并记p)nb(k;qpCknkkn.⑵二项分布的判断与应用.①二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4.几何分布:“k”表示在第k次独立重复试验时,事件第一次发生,如果把k次试验时事件A发生记为kA,事A不发生记为q)P(A,Akk,那么)AAAAP(k)P(ξk1k21.根据相互独立事件的概率乘法分式:))P(AAP()A)P(AP(k)P(ξk1k21),3,2,1(1kpqk于是得到随机变量ξ的概率分布列.123…k…Pqqppq2…pq1k…我们称ξ服从几何分布,并记pqp)g(k,1k,其中3,2,1.1kpq5.⑴超几何分布:一批产品共有N件,其中有M(M<N)件次品,今抽取)Nnn(1件,则其中的次品数ξ是一离散型随机变量,分布列为)MNknM,0k(0CCCk)P(ξnNknMNkM.〔分子是从M件次品中取k件,从N-M件正品中取n-k件的取法数,如果规定m<r时0Crm,则k的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由a件次品、b件正品组成,今抽取n件(1≤n≤a+b),则次品数ξ的分布列为n.,0,1,kCCCk)P(ξnbaknbka.⑶超几何分布与二项分布的关系.设一批产品由a件次品、b件正品组成,不放回抽取n件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数的分布列可如下求得:把ba个产品编号,则抽取n次共有nba)(个可能结果,等可能:k)(η含knkknbaC个结果,故n,0,1,2,k,)baa(1)baa(Cb)(abaCk)P(ηknkknnknkkn,即~)(baanB.[我们先为k个次品选定位置,共knC种选法;然后每个次品位置有a种选法,每个正品位置有b种选法]可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.二、数学期望与方差.1.期望的含义:一般地,若离散型随机变量ξ的概率分布为1x2x…ix…P1p2p…ip…则称nnpxpxpxE2211为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.2.⑴随机变量ba的数学期望:baEbaEE)(①当0a时,bbE)(,即常数的数学期望就是这个常数本身.②当1a时,bEbE)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当0b时,aEaE)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑵单点分布:ccE1其分布列为:cP)1(.⑶两点分布:ppqE10,其分布列为:(p+q=1)⑷二项分布:npqpknknkEknk)!(!!其分布列为~),(pnB.(P为发生的概率)⑸几何分布:pE1其分布列为~),(pkq.(P为发生的概率)3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()(kpxPkk时,则称nnpExpExpExD2222121)()()(为ξ的方差.显然0D,故.D为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.D越小,稳....定性越高,波动越小...........ξ01Pqp4.方差的性质.⑴随机变量ba的方差DabaDD2)()(.(a、b均为常数)⑵单点分布:0D其分布列为pP)1(⑶两点分布:pqD其分布列为:(p+q=1)⑷二项分布:npqD⑸几何分布:2pqD5.期望与方差的关系.⑴如果E和E都存在,则EEE)(⑵设ξ和是互相独立的两个随机变量,则DDDEEE)(,)(⑶期望与方差的转化:22)(EED⑷)()()(EEEEE(因为E为一常数)0EE.三、正态分布.1.密度曲线与密度函数:对于连续型随机变量ξ,位于x轴上方,ξ落在任一区间),[ba内的概率等于它与x轴.直线ax与直线bx所围成的曲边梯形的面积(如图阴影部分)的曲线叫ξ的密度曲线,以其作为图像的函数)(xf叫做ξ的密度函数,由于“),(x”是必然事件,故密度曲线与x轴所夹部分面积等于1.2.⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:222)(21)(xexf.(,,Rx为常数,且0),称ξ服从参数为,的正态分布,用~),(2N表示.)(xf的表达式可简记为),(2N,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若~),(2N,则ξ的期望与方差分别为:2,DE.⑶正态曲线的性质.①曲线在x轴上方,与x轴不相交.②曲线关于直线x对称.③当x时曲线处于最高点,当x向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x<时,曲线上升;当x>时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x轴为渐近线,向x轴无限的靠近.ξ01Pqp▲yxaby=f(x)⑤当一定时,曲线的形状由确定,越大,曲线越“矮胖”.表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中.3.⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22xexx,则称ξ服从标准正态分布.即~)1,0(N有)()(xPx,)(1)(xx求出,而P(a<ξ≤b)的计算则是)()()(abbaP.注意:当标准正态分布的)(x的X取0时,有5.0)(x当)(x的X取大于0的数时,有5.0)(x.比如5.00793.0)5.0(则5.0必然小于0,如图.⑵正态分布与标准正态分布间的关系:若~),(2N则ξ的分布函数通常用)(xF表示,且有)σμx(F(x)x)P(ξ.习题1.6名同学排成两排,每排3人,其中甲排在前排的概率是()A.121B.21C.61D.312.有10名学生,其中4名男生,6名女生,从中任选2名,恰好2名男生或2名女生的概率是()A.452B.152C.31D.1573.甲乙两人独立的解同一道题,甲乙解对的概率分别是21,pp,那么至少有1人解对的概率是()A.21ppB.21ppC.211ppD.)1()1(121pp4.从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是()A.51B.52C.53D.545.有2n个数字,其中一半是奇数