数学备课组必修Ⅰ第二章:函数1第二章、函数第一节、函数一、函数1、函数的定义:设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,这种对应关系叫做集合A上的一个函数,记作yfx,xA。其中,x叫做自变量,自变量的取值范围叫做函数的定义域。所有函数值构成的集合,即,yyfxxA叫做这个函数的值域。2、检验两个给定的变量之间是否具有函数关系,需检验:(1)定义域和对应法则是否给出;(2)根据给出的对应法则,自变量x在其定义域中的每一个值,是否都能确定唯一的函数值y。例1、下列图形中,能表示y是x的函数的是()例2、下列等式中,能表示y是x的函数的是()A.yxB.21yxC.21yxD.21yx3、如何判断函数的定义域:(1)分式的分母不能为零;(2)开偶次方根的被开方数要不小于零;(3)多个函数经过四则运算混合得到的函数定义域是多个定义域的交集;(4)函数0x中x不为零。例3、求下列函数的定义域(1)32()32xfxx;(2)()21fxx;AxBCDxxxyyyyoooo数学备课组必修Ⅰ第二章:函数2(3)20()(4)fxx;(4)21()42fxxx例4、求下列函数值域(1)()21,1,2,3,4fxxx(2)2()21,0,3fxxxx(3)),1(,1)(xxxf(4)21(),1,1xfxxx4、函数的3要素:定义域、值域和对应法则。判断两个函数相同的依据就是函数的三要素完全相同。注:在函数关系式的表述中,函数的定义域有时可以省略,这时就约定这个函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合。例5、下列各对函数中,是相同函数的是()A.2(),()fxxgxxB.2(),()fxxgxxC.2(),()fxxgxxD.2(),()fxxgxx5、区间:设a,bR,且a<b,满足a≤x≤b的全体实数x的集合,叫做闭区间,记作[a,b];满足a<x<b的全体实数x的集合,叫做开区间,记作﹙a,b﹚;满足a≤x<b或a<x≤b的全体实数x的集合,都叫做半开半闭区间,分别记作[a,b﹚或﹙a,b];分别满足x≥a,x>a,x≤a,x<a的全体实数的集合分别记作[a,﹢∞﹚,﹙a,﹢∞﹚,﹙﹣∞,a],﹙﹣∞,a﹚。6、映射:设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.其中x叫做原象,y叫做象。注:映射可以是多对一,不可以一对多。即A中元素不可剩余,B中元素可以剩余。特别的,集合B中的任意元素在集合A中有且只有一个原象的映射,叫做一一映射。7、映射个数的确定:若集合A有m个元素,集合B中有n个元素,则A到B的映射有mn个。例6、已知集合},{},3,2,1{baBA。问:(1)A到B的不同映射f:BA有多少个?(2)B到A的不同映射g:AB有多少个?数学备课组必修Ⅰ第二章:函数38、映射与函数的关系:函数是特殊的映射。9、复合函数:二、函数的表示方法1、列表法:通过列出自变量与对应函数值的表格来表示函数关系;2、图像法:用图像表示函数关系;3、解析法(公式法):用代数式表示函数关系。三、分段函数在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这样的函数叫做分段函数。例7、已知函数)22(2||1)(xxxxf(1)用分段函数的形式表示该函数;(2)画出该函数的图像;(3)写出该函数的值域。四、函数的单调性1、增函数和减函数的定义:设函数)(xfy的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量21,xx,当21xx时,都有)()(21xfxf,那么就说)(xf在区间D上是增函数.区间D称为)(xfy的单调增区间;如果对于区间D上的任意两个自变量的值21,xx,当21xx时,都有)()(21xfxf,那么就说)(xf在这个区间上是减函数.区间D称为)(xfy的单调减区间。2、图像特点:数学备课组必修Ⅰ第二章:函数4增函数:自左向右图象是上升的减函数:自左向右图象是下降的3、函数单调性的判定方法(1)定义法:任取Dxx21,,且21xx,判断21yfxfx的符号,若y>0,fx在D上单调递增,若y<0,fx在D上单调递减;(2)图像法:根据图像直观地判断函数的单调性;(3)直接法:根据一些特殊函数的性质,直接得出函数的单调性,如一次函数中的k>0,直接得出函数为增函数;(4)结论:①()()fxfx与-具有相反的单调性;②()fx与()fxc(c为常数)具有相同的单调性;③a>0时,()afx与()fx具有相同的单调性,a<0时,()afx与()fx具有相反的单调性;④若()0fx,则1()()fxfx与具有相反的单调性;⑤()0fx时,()fx与()fx具有相同的单调性;⑥若()fx与()gx具有相同的单调性,则()()fxgx与()fx和()gx都具有相同的单调性。例8、讨论下列函数的单调性(1)3xy(2)1||xy(3))0(1xxy(4)223yxx例9、证明函数xxxf1)(在)1,0(上是减函数。例10、求函数xxxf1)(在区间)2,0(上的最小值。4、复合函数单调性判断:同增异减例11、判断函数22(2)444xyxx在(-2,+∞)上的单调性数学备课组必修Ⅰ第二章:函数5五、函数的奇偶性1、奇函数、偶函数的定义:一般地,对于函数)(xf的定义域D内的任意一个x,都有Dx,且)()(xfxf,那么)(xf就叫做奇函数,)()(xfxf,那么)(xf就叫做偶函数。例12、判断奇偶性(1)2()1fxx(2)3()fxxx(3)()fxx(4)()1fxx例13、判断函数222,0()0,02,0xxfxxxx的奇偶性2、图像特征:(1)奇函数的图象关于原点对称,偶函数的图象关于y轴对称;(2)奇函数()yfx的定义域为D,若0D,则(0)0f。3、函数奇偶性的判定:(1)根据定义:①首先确定函数的定义域,并判断其是否关于原点对称,如果不关于原点对称,则函数没有奇偶性;②若定义域关于原定对称,再确定)(xf与)(xf的关系;③最后作出相应结论:若)()(xfxf或0)()(xfxf,则)(xf是奇函数,若)()(xfxf或0)()(xfxf,则)(xf是偶函数。(2)根据图像:若函数的图象关于原点对称,则函数为奇函数;若函数的图象关于y轴对称,则函数为偶函数。(3)根据性质:奇函数+奇函数=奇函数;偶函数+偶函数=偶函数;奇函数奇函数偶函数;偶函数偶函数偶函数;奇函数偶函数奇函数(4)函数的分拆:任何一个函数()fx都可以拆分成一个奇函数和一个偶函数的和,即()()()fxFxGx,其中()()()2fxfxFx(偶函数),()()()2fxfxGx(奇函数)。数学备课组必修Ⅰ第二章:函数64、复合函数)(xgfy的奇偶性若函数)(),(),(xgfxgxf的定义域都是关于原点对称的,那么由)(),(ufyxgu的奇偶性得到)(xgfy的奇偶性的规律是:函数奇偶性)(xgu奇函数奇函数偶函数偶函数)(ufy奇函数偶函数奇函数偶函数)(xgfy奇函数偶函数偶函数偶函数即当且仅当)(xgu和)(ufy都是奇函数时,复合函数)(xgfy是奇函数.5、利用奇偶性求函数解析式:例14、若函数()fx是定义在R上的偶函数,当0x时,2()2fxxx,求当0x时,函数()fx的解析式。6、函数奇偶性与单调性综合应用:例15、函数()fx是定义在R上的奇函数,在(0,)上是增函数,且(1)0f,则满足()0fx成立的x的取值范围是。例16、定义在[2,2]上的偶函数()gx,当0x时,()gx为减函数,若(1)()gmgm成立,求m的取值范围。第二节、一次函数和二次函数一、一次函数的性质与图像1、一次函数的概念:函数)0(kbkxy叫做一次函数,定义域和值域都为R,它的图像是直线,其中k叫做该直线的斜率,b叫做该直线在y轴上的截距。数学备课组必修Ⅰ第二章:函数72、一次函数的性质与图像:一次函数)0(kbkxy图像性质单调性奇偶性0k0byOx增函数奇函数0byyOxOx增函数非奇非偶函数0k0byOx减函数奇函数0byyOxOx减函数非奇非偶函数例1、已知函数mmxmy,31)12(为何值时,(1)这个函数为正比例函数;(2)这个函数为一次函数;(3)函数值y随x的增大而减小;(4)这个函数的图像与直线1xy的交点在x轴上。例2、如果一次函数)0(kbkxy的图像经过一、三、四象限,那么()A、0,0bkB、0,0bkC、0,0bkD、0,0bk例3、直线bkxy过点)22,22(和)2,0(,求直线bkxy与坐标轴围成三角形的面积。二、二次函数的性质与图像数学备课组必修Ⅰ第二章:函数81、二次函数的概念:形如)0(2acbxaxy的函数叫做二次函数.其定义域是R。2、二次函数的解析式:一般式:)0()(2acbxaxxf;顶点式:)0()()(2akhxaxf,),(kh是二次函数的顶点坐标;两根式:)0)()(()(21axxxxaxf,21,xx是二次函数与x轴的两个交点的横坐标。3、二次函数的性质与图像二次函数)0(2acbxaxy图像0a0a定义域R值域对称轴顶点坐标奇偶性是偶函数0)c(abxaxy02b单调性)2,(abx是减函数,),2(abx是增函数)2,(abx是增函数,),2(abx是减函数最值abx2时,abacy442minabx2时,abacy442max例4、设abc>0,二次函数f(x)=ax2+bx+c的图象可能是()),44[2abacy]44,(2abacy)44,2(2abacababx2数学备课组必修Ⅰ第二章:函数94、与二次函数有关的不等式恒成立问题:(1)ax2+bx+c0恒成立的充要条件是a0Δ0;(2)ax2+bx+c0恒成立的充要条件是a0Δ0;例5、设22)(2axxxf,当),1[x时,axf)(恒成立,求a的取值范围。三、待定系数法一般的,在求一个函数时,如果知道这个函数的一般式,可先把所求函数写为一般形式,其中系数待定,然后再根据题设条件求出这些待定的系数,这种通过求待定系数来确定变量之间关系式的方法叫做待定系数法。例6、已知一次函数的图像经过)2,5(和)4,3(,求这个函数的解析式。例7、已知二次函数)(xfy的图像过)0,5(),5,0(BA两点,它的对称轴为直线2x,求这个二次函数的解析式。数学备课组必修Ⅰ第二章:函数10第三节、函数与方程一、函数的零点1、函数零点的概念:对于函数))((Dxxfy,把使0)(xf成立的实数x叫做函数))((Dxxfy的零点。即函数)(xf的图像与x轴交点的横坐标叫这个函数的零点。例1、下列函数中没有零点的是()A.2)(xxfB.xxf)(C.xxf1)(D.xxxf2)(2、零点存在定理:如果函数)(xfy在区间],[ba上的图象是连续不断的一条曲线,并且有0)()(bfaf,那么函数)(xfy在区间),(ba内至少有一个零点。既存在0(,)xab,使得00fx,这个0x就是方程的根。例2、若方程0122xax