■1968-“”GS2015GHB1415:,,.,,,.:;;;“”..、1(2016)f(x)=ax2-a-lnx,a∈R.(1)f(x);(2)a,f(x)>1x-e1-x(1,+∞)(e=2.718…).1.2fx>1x-e1-x1+∞a>1x-e1-x+lnxx2-11+∞.x→11x-e1-x+lnxx2-1→12x→+∞1x-e1-x+lnxx2-1→0..1x-e1-x+lnxx2-1<121+∞.12x2-12-lnx-1x+e1-x>01+∞.gx=12x2-12-lnx-1x+e1-xx∈1+∞g'x=x-1x+1x2-e1-x=x-e1-x+1-xx2>x-1+1-xx2=x-11-1x2>0.gx1+∞gx>g1=0.1x-e1-x+lnxx2-1<121+∞.a≥12..、2(2011)f(x)=alnxx+1+bx,y=f(x)(1,f(1))x+2y-3=0.(1)a,b;(2)x>0x≠1,f(x)>lnxx-1+kx,k.1a=b=1.2fx-lnxx-1-kx=11-x22lnx+k-1x2-1x>0x>0x≠1.·62·x∈01tx=2lnx+k-1x2-1x>0.t1=0t'1=2k≤0k≤0.t'1>0t'xmx∈m1t'x>0x∈m1tx<t1=0..lnxx+1+1x≥32-x2.hx=lnx+12x2-x+1x-12≥0.h'x=1x+x-1-1x2=x-11+x2x2>0x>1hx1+∞01hx≥h1=0.k≤0fx>lnxx-1+kxx>0x≠132-x2>lnxx-1+kxk<32x-12x2-lnxx-1x>0x≠1gx=32x-12x2-lnxx-1x>0x≠1g'x=32-x-x-1lnx+1-xlnxx-12=x-12x2+3x-1+2lnx2x-12x>1g'x>0gx0<x<1g'x<0gx.x→1gx→0gx>0.k≤0..、3f(x)=(1+x)e-2x,g(x)=ax+12x3+1+2xcosx,x∈[0,1].(1):1-x≤f(x)≤11+x;(2)f(x)≥g(x),a.(2013)1.2hx=fx-gx1+xe-2x-ax-12x3-1-2xcosx≥001.h0=0h'x=-1+2xe-2x-a-32x2-2cosx+2xsinxh'0=-1-a-2≥0a≤-3..a≤-31fx≥1-xfx≥gx011-x≥ax+12x3+1+2xcosx-ax≥12x3+x+2xcosx01.x=0.x∈01-a≥12x2+1+2cosx.px=12x2+1+2cosxx∈01p'x=x-2sinxp″x=1-2cosx<0p'x01p'x≤p'0=0.px01px<p0=0.a≤-3..、4f(x)=ax-12x2-aln(x+1)(a>0),g(x)=ex-x-1,y=f(x)y=g(x),x≥0,g(x)≥f(x)+12x2,a.gx≥fx+12x2ex-x-1≥ax-lnx+1x≥0.hx=x-lnx+1x≥0h'x=x1+x≥0hx0+∞hx≥h0=0.x=0a>0.x>0a≤ex-x-1x-lnx+1..hx=ex-x-1-x-lnx+1x>0·72·h'x=ex-2+1x+1h″x=exx+12-1x+12>0h'x0+∞h'x>h'0=0hx0+∞hx>h0=0.ex-x-1x-lnx+1>1x→0ex-x-1x-lnx+1→1a≤1..、5f(x)=ex-ax-a2(x∈R,a∈[0,+∞),e=2.71828…,槡e=1.64872…).(Ⅰ)f(x)0,a;(Ⅱ)m>2.3,ex>lnx+m,m.Ⅰa=槡e.Ⅱe=2.71828…槡e=1.64872….Ⅰa=槡efx≥0x∈Rex≥槡ex+槡e2x>0.槡ex+槡e2-lnx>m.gx=槡ex+槡e2-lnxx>0g'x=槡e-1x>0x>1槡egx1槡e+∞01槡e.gxmin=g1槡e=32+槡e2.槡e=1.64872…3+槡e2≈4.648722>2.3.m2.33+槡e2..、6f(x)=ex+m-x3,g(x)=ln(x+1)+2.(1)y=f(x)(0,f(0))1,m.(2)f(x)>g(x)-x3,m.12hx=fx-gx-x3=ex+m-lnx+1-2>0x∈-1+∞.h0=em-2>0m>ln2..m=1ex+1-lnx+1-2>0.px=ex+1-lnx+1-2p'x=ex+1-1x+1-1+∞p'0=e-1>0p'-12=e12-2<0p'x-1+∞x0x0∈-120.x∈-1x0p'x<0pxx∈x0+∞p'x>0px.p'x0=ex0+1-1x0+1=0.px≥px0=ex0+1-lnx0+1-2=1x0+1-ln1ex0+1-2=1x0+1+x0+1-2>0.m1..734200·82·