1上海市初中数学学科教学基本要求第一单元数与运算一、数的整除1.内容要目数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。2.基本要求(1)知道数的整除性、奇数和偶数、素数和合数、因数和倍数、公倍数和公因素等的意义;知道能被2、5整除的正整数的特征。(2)会用短除法分解素因数;会求两个正整数的最大公因素和最小公倍数。3.重点和难点重点是会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数。难点是求两个正整数的最小公倍数。4.知识结构二、实数1.内容要目实数的概念,实数的运算。近似计算以及科学记数法。2.基本要求(1)理解开方及方根的意义,知道无理数的概念,知道实数与数轴上的点具有一一对应的关系。(2)理解实数概念,掌握实数的加、减、乘、除、乘方、开方等运算的法制,会正确进行实数的运算。(3)会用计算器进行实数的运算,初步掌握估算、近似计算的基本方法和科学记数法。3.重点和难点重点是理解实数概念,会正确进行实数的运算。数的整除两个整数间的关系一个整数公倍数公因数互素整数最小公倍数最大公因数倍数因数能被5整除的特征能被2整除的特征合数分解素因数素数偶数奇数2难点是认识实数与数轴上的点的一一对应关系。4.知识结构第二单元方程与代数一、整式与分式1.内容要目代数式,整式的加减法,同底数幂的乘法和除法,幂的乘方,积的乘方。单项式的乘法和除法,单项式与多项式的乘法,多项式除以单项式,多项式的乘法。乘法公式:22222()();()2ababababaabb因式分解:提取公因式法,公式法,十字相乘法,分组分解法。分式,分式的基本性质,约分,最简分式,通分,分式的乘除法,分式的加减法,整数的指数幂,整数指数幂的运算。2.基本要求(1)理解用字母表示数的意义;理解代数式的有关概念。(2)通过列代数式,掌握文字语言与数学式子的表述之间的转换,领悟字母“代”数的数学思想;会求代数式的值。(3)掌握整式的加、减、乘、除及乘方的运算法则,掌握平方差公式、两数和(差)的平方公式。(4)理解因式分解的意义,掌握提取公因式法、公式法、二次项系数为1时的十字相乘法、分组分解法等因式分解的基本方法。(5)理解分式的有关概念及其基本性质,掌握分式的加、减、乘、除运算。(6)理解正整数指数幂、零指数幂、负整数指数幂的概念,掌握有关整数指数幂的乘(除)、乘方等运算的法则。说明①在求代数式的值时,不涉及繁难的计算;②不涉及繁难的整式运算,多项式除法中的除式限为单项式;③在因式分解中,被分解的多项式不超过四项,不涉及添项、拆项等技巧;④不涉及繁复的分式运算。3.重点和难点重点是整式与分式的运算,因式分解的基本方法,整数指数幂的运算。难点是选择适当的方法因式分解及代数式的混合运算。实数实数的运算用数轴上的点表示实数实数的分类近似数及近似计算运算法则及运算性质实数大小比较绝对值34.知识结构二、二次根式1.内容要目二次根式的概念,二次根式的性质;最简二次根式,同类二次根式,分母有理化,二次根式的加、减、乘、除及其混合运算,分数指数幂。2.基本要求(1)理解二次根式的概念,会根据二次根式中被开放数应满足的条件,判断或确定所含字母的取值范围。(2)掌握二次根式的性质,会利用性质化简二次根式。(3)理解最简二次根式、同类二次根式、分母有理化的意义,会将二次根式化为最简二次根式,会判别同类二次根式,会进行分母有理化。(4)会进行二次根式的加、减、乘、除及其混合运算。(5)会解系数或常数项含二次根式的一元一次方程和一元一次不等式。(6)理解分数指数幂的概念,会求分数指数幂。说明①关于二次根式的性质,包括:22(0()(0);||0(0),(0);(0,0);(0,aaaaaaaaaaaaababababbb>),<>0)②不出现繁难的二次根式的运算;在求解其系数或常数项含二次根式的一元一次方程和一元一次不等式时,所涉及的计算不繁难。3.重点和难点重点是二次根式的性质,二次根式的加、减、乘、除及其混合运算,分数指数幂的运算。难点是系数或常数项含二次根式的一元一次不等式的求解。4.知识结构代数式分式整式分式的意义分式的基本性质分式的运算(加、减、乘、除)整数指数幂的运算整式的有关概念整式的运算(加、减、乘、除、乘方)因式分解4三、一次方程与不等式(组)1.内容要目列方程,一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。不等式的概念,不等式的性质,不等式的解集;一元一次不等式,一元一次不等式的解法;一元一次不等式组及其解集,一元一次不等式组的解法。二元一次方程、二元一次方程组的概念,二元一次方程组的解法,三元一次方程的概念,三元一次方程组的解法。一次方程组的应用。2.基本要求(1)理解一元一次方程的有关概念,掌握一元一次方程解法。(2)理解二元一次方程和它的解以及一次方程组和它的解的概念,掌握“消元法”,会解二元、三元一次方程组。(3)会列一次方程(组)解简单的应用题。(4)理解不等式及不等式的基本性质,理解一元一次不等式(组)及其解的有关概念,掌握一元一次不等式的解法,会利用数轴表示不等式的解集,会解简单的一元一次不等式组。说明不出现涉及繁难计算的解方程(组)、不等式(组)的问题。3.重点和难点重点是一元一次方程、二元一次方程组、三元一次方程组、一元一次不等式、一元一次不等式组的解法。难点是一次方程(组)的应用。4.知识结构最简二次根式同类二次根式分母有理化二次根式的概念二次根式的性质二次根式的运算一次方程二元一次方程三元一次方程二元一次方程组三元一次方程组一次方程组一元一次方程不等式不等式性质一元一次不等式一元一次不等式组5四、一元二次方程1.内容要目一元二次方程的概念,一元二次方程的解法,一元二次方程的根的判别式,一元二次方程的应用。2.基本要求(1)理解一元二次方程的概念。(2)会用开平方法、因式分解法解特殊的一元二次方程,理解配方法解一元二次方程的思路,会用配方法和公式法解一元二次方程。(3)会求一元二次方程的根的判别式的值,知道判别式与方程实数根情况之间的联系,会利用判别式判断实数根的情况。(4)会利用一元二次方程的求根公式对二次三项式在实数范围内进行因式分解。(5)会列一元二次方程解简单的实际问题。3.重点和难点重点是一元二次方程的解法。难点是一元二次方程的简单应用。4.知识结构五、代数方程1.内容要目含有字母系数的一元一次与一元二次方程,特殊的高次方程(二项方程、双二次方程),分式方程,无理方程,简单的二元二次方程(组),列方程(组)解应用题。2.基本要求(1)知道整式方程的概念;会解含有一个字母系数的一元一次方程与一元二次方程。(2)知道高次方程的概念;会用计算器求二项方程的实数根(近似跟),会用换元法解双二项方程,会用因式分解的方法解某些简单的高次方程。(3)理解分式方程、无理方程的概念;掌握可化为一元一次方程、一元二次方程的分式方程(组)和简单的无理方程的解法,知道“验根”是解分式方程(组)和无理方程的必要步骤,掌握验根的基本方法。(4)理解二元二次方程和二元二次方程组的概念;会用代入消元法解由一个二元一次方程与一个二元二次方程所组成的二元二次方程组,会用因式分解法解两个方程中至少有一个容易变形为二元一次方程的二元二次方程组。(5)会列出一元二次方程、分式方程(组)、无理方程、二元二次方程组求解简单的实际问一元二次方程应用根的判别式简单的实际问题二次三项式的因式分解解法因式分解法公式法配方法开平方法6题。3.重点和难点重点是特殊的高次方程的解法和简单的分式方程、无理方程、二元二次方程组的解法,以及有关方程(组)的基本应用。难点是对分式方程和无理方程有可能产生增根的理解以及对实际问题中数量关系的分析。4.知识结构第三单元图形和几何一、长方体的在认识1.内容要目长方体,长方体的画法,直线与直线、直线与平面、平面与平面的基本位置关系。2.基本要求(1)认识长方体的顶点、棱、面等元素,会画长方体的直观图。(2)以长方体为载体理解长方体中棱、面之间的基本位置关系的含义,知道两条直线之间三种位置关系。(3)认识线面、画面的平行和垂直关系,知道一些简单的检验方法。3.重点和难点重点是长方体的概念、画法,长方体中棱、面之间的位置关系。难点是利用工具检验空间直线、平面之间的位置关系。4.知识结构列方程(组)解应用题无理方程代数方程有理方程分式方程整式方程一元方程高次方程二次方程一次方程多元方程二元一次方程(组)三元一次方程(组)二元二次方程(组)直观图的画法棱、面的特点长方体平行、垂直的检验方法棱和面的位置关系棱和棱的位置关系面和面的位置关系7二、相交直线与平行直线1.内容要目平面上两直线的位置关系;垂线;对顶角;邻补角。同位角、内错角、同旁内角。两点的距离、点到直线的距离、两条平行线间的距离。平行线的判定、性质。角平分线及其性质,线段的垂直平分线及其性质;轨迹。基本作图。2.基本要求(1)知道平面中两条直线的位置关系是相交或平行;知道两条相交直线只有一个交点,它们所成的角(小于平角)有四个,会用交角的大小描述相交直线的位置特征;知道垂线的概念及性质;理解对顶角和邻补角的概念,掌握对顶角的性质。(2)掌握同位角、内错角、同旁内角的概念。(3)知道两点之间线段最短,理解两点的距离的意义;知道过直线外一点到直线的垂线段最短,理解点到直线的距离的意义;知道过直线外一点能且只能画一条直线与这条直线平行,理解两条平行线间的距离的意义。(4)掌握平行线的判定方法及其性质。(5)掌握角的平分线、线段的垂直平分线的有关性质,知道轨迹的意义以及三条基本轨迹(圆、角平分线、线段的垂直平分线)。(6)掌握直尺、三角板、圆规、量角器的使用方法,会画已知线段的中点和直线的垂线;会用直尺和圆规作一条线段等于已知线段,作一个角等于已知角、作角的平分线、作线段的垂直平分线等,从中体会交轨法作图。3.重点和难点重点的平行线的判定和性质及其应用。难点是角的平分线性质和线段的垂直平分线性质及其应用。4.知识结构同两一条平直面线内的相交直线平行直线平行线的基本性质判断方法与性质邻补角对顶角两条直线被第三条直线所截同位角、内错角、同旁内角斜交垂直角平分线垂直的基本性质点到直线的距离线段的垂直平分线平行线间的距离8三、三角形(一)三角形的概念1.内容要目三角形的概念,三角形三边之间的关系,三角形的高、中线、角平分线,三角形中位线定理,三角形的分类,三角形的内角和定理,三角形外角的概念和性质。命题,真命题,假命题,逆命题,定理,逆定理。2.基本要求(1)掌握三角形的任意两边之和大于第三边的性质(2)理解三角形的高、中线、角平分线等概念,并会画这些特殊线段。(3)知道三角形的三条中线交与一点(重心)、三条角平分线交于一点(内心)、三条高所在的直线交于一点(垂心),三条边的垂直平分线交于一点(外心)。(4)知道三角形中位线的定义,掌握三角形中位线定理。(5)知道三角形按边分类和按角分类的类型,体会分类讨论思想。(6)理解三角形内角和定理的推导过程,掌握三角形的内角和定理;知道三角形的外角,初步掌握三角形外角的性质。(7)理解命题、真命题、假命题、逆命题、定理、逆定理的意义,会叙述简单命题的逆命题,知道命题的真假与逆命题的真假无关。3.重点和难点重点是三角形的内角和定理,以及三角形中位线定理。难点是三角形内角和定理的证明过程和对三角形的任意两边之和大于第三边的理解。4.知识结构三角形三角形的分类三角形的内角和定理三角形的有关线段按角分类按边分类钝角三角形直角三角形锐角三角形等腰三角形等边三角形不等边三角形三角形的外角和三角形的中位线三角形的高、中线、角平分线三角形三边的关系假命题真命题公理定理逆定理命题逆命题9(二)等腰三角形与直角三角形1.内容要目等腰三角形的概念,等腰三角形的性质和判定,等边三角形的概念,等边三角形的性质和判定,直角三角形的概念,直角三角形的性质和判定,勾