最新【苏科版】八年级上第一次月考数学试卷(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

最新教学资料·苏教版数学八年级(上)第一次月考数学试卷一、选择题(每题3分,共18分)1.下列四副图案中,不是轴对称图形的是()A.B.C.D.2.如果等腰三角形两边长是8cm和4cm,那么它的周长是()A.20cmB.16cmC.20cm或16cmD.12cm3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形5.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7B.14C.17D.206.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共30分)7.如图,若∠1=∠2,加上一个条件__________,则有△AOC≌△BOC.8.等腰三角形的一个角为40°,则它的底角为__________.9.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为__________度.10.如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积,若S1=9,S2=16,则S3=__________.11.已知一个直角三角形的三边的平方和为1800cm2,则斜边长为__________cm.12.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为__________.13.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于__________.14.如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有__________个(不含△ABC).15.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是__________.16.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=5,ON=12,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是__________.三、解答题(共102分)17.如图,在11×11的正方形网格中,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C1相对应);(2)在直线l上找一点P,使得△PAC的周长最小.18.如图,∠D=∠C=90°,AC=BD.求证:AD=BC.19.已知,如图,AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:FC=FD.20.如图,在△ABC中,CD⊥AB于D,AD=9,BD=16,CD=12.(1)求△ABC的周长;(2)△ABC是直角三角形吗?请说明理由.21.△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作一直线交AB、AC于E、F.且BE=EO.(1)说明OF与CF的大小关系;(2)若BC=12cm,点O到AB的距离为4cm,求△OBC的面积.22.如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长AC至E,使CE=AC.(1)求证:DE=DB;(2)连接BE,试判断△ABE的形状,并说明理由.23.如图,将边长为a与b、对角线长为c的长方形纸片ABCD,绕点C顺时针旋转90°得到长方形FGCE,连接AF.通过用不同方法计算梯形ABEF的面积可验证勾股定理,请你写出验证的过程.24.如图,△ABC中,∠A=60°.(1)试求作一点P,使得点P到B、C两点的距离相等,并且到AC、BC两边的距离也相等(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若∠ABP=15°,求∠BPC的度数.25.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:__________;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为__________和__________,请用所学知识说明它们是一组勾股数.26.(14分)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为__________;②线段AD、BE之间的数量关系是__________.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.2015-2016学年江苏省泰州中学附中八年级(上)第一次月考数学试卷一、选择题(每题3分,共18分)1.下列四副图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.如果等腰三角形两边长是8cm和4cm,那么它的周长是()A.20cmB.16cmC.20cm或16cmD.12cm【考点】等腰三角形的性质;三角形三边关系.【分析】分腰长为8cm和4cm两种情况,再利用三角形的三边关系进行判定,再计算周长即可.【解答】解:当腰长为8cm时,则三角形的三边长分别为8cm、8cm、4cm,满足三角形的三边关系,此时周长为20cm;当腰长为4cm时,则三角形的三边长分别为4cm、4cm、8cm,此时4+4=8,不满足三角形的三边关系,不符合题意;故选A.【点评】本题主要考查等腰三角形的性质和三角形的三边关系,分两种情况并利用三角形的三边关系进行验证是解题的关键.3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形【考点】相似三角形的性质.【分析】根据三组对应边的比相等的三角形相似,依据相似三角形的性质就可以求解.【解答】解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形.故选C.【点评】本题主要考查相似三角形的判定以及性质.5.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7B.14C.17D.20【考点】线段垂直平分线的性质.【专题】几何图形问题;数形结合.【分析】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.【解答】解:∵在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.故选C.【点评】此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.6.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°【考点】轴对称的性质.【分析】根据三角形的内角和定理和折叠的性质计算即可.【解答】解:∵∠1:∠2:∠3=7:2:1,∴设∠1=7x,∠2=2x,∠3=x,由∠1+∠2+∠3=180°得:7x+2x+x=180°,解得x=18,故∠1=7×18=126°,∠2=2×18=36°,∠3=1×18=18°,∵△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,∴∠DCA=∠E=∠3=18°,∠2=∠EBA=∠D=36°,∠4=∠EBA+∠E=36°+18°=54°,∠5=∠2+∠3=18°+36°=54°,故∠EAC=∠4+∠5=54°+54°=108°,在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CFA,∴△EGF∽△CAF,∴α=∠EAC=108°.故选B.【点评】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.二、填空题(每题3分,共30分)7.如图,若∠1=∠2,加上一个条件∠A=∠B,则有△AOC≌△BOC.【考点】全等三角形的判定.【分析】此题是一道开放型的题目,答案不唯一,如∠A=∠B,或者OA=OB等.【解答】解:∠A=∠B,理由是:在△AOC和△BOC中,,∴△AOC≌△BOC(AAS).故答案为:∠A=∠B.【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.8.等腰三角形的一个角为40°,则它的底角为40°或70°.【考点】等腰三角形的性质.【分析】由于不明确40°的角是等腰三角形的底角还是顶角,故应分40°的角是顶角和底角两种情况讨论.【解答】解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故答案为:40°或70°.【点评】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.9.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为100度.【考点】轴对称的性质.【分析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=30°,∴∠B=180°﹣∠A﹣∠C=180°﹣50°﹣30°=100°.故应填100.【点评】此题考查关于某直线对称的两图形全等,全等三角形的对应角相等以及三角形的内角和定理.10.如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积,若S1=9,S2=16,则S3=7.【考点】勾股定理

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功