1苏教版八年级数学上册知识点第1章全等三角形一、全等三角形概念:能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。一个三角形经过平移、翻折、旋转可以得到它的全等形。2、全等三角形的表示全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。4、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”5、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)2直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)6、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。5、证明两个三角形全等的基本思路:一般来讲,应根据题设并结合图形,先确定两个三角形已知相等的边或角,然后按照判定公理或定理,寻找并证明还缺少的条件.其基本思路是:1).有两边对应相等,找夹角对应相等,或第三边对应相等.前者利用SAS判定,后者利用SSS判定.2).有两角对应相等,找夹边对应相等,或任一等角的对边对应相等.前者利用ASA判定,后者利用AAS判定.3).有一边和该边的对角对应相等,找另一角对应相等.利用AAS判定.4).有一边和该边的邻角对应相等,找夹等角的另一边对应相等,或另一角对应相等.前者利用SAS判定,后者利用AAS判定.二、角的平分线:1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:角的内部到角的两边的距离相等的点在角平分线上4、方法规律(1)有角平分线,通常向角两边引垂线。(2)证明点在角的平分线上,关键是要证明这个点到角两边的距离相等,即证明线段相等。常用方法有:使用全等三角形,角平分线的性质和利用面积相等,但特别要注意点到角两边的距离。(3)注意:证题时可直接应用角平分线性质定理和判定定理,不必去找全等三角形。3第2章轴对称图形一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系区别:(1)轴对称是指两个图形间的位置关系,轴对称图形是指一个具有特殊形状的图形;(2)轴对称涉及两个图形,轴对称图形是对一个图形而言的.联系:(1)定义中都有一条直线,都要沿着这条直线折叠重合;(2)如果把轴对称图形沿对称轴分成两部分(即看成两个图形),那么这两个图形就关于这条直线成轴对称;反过来,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.4.轴对称的性质①关于某直线对称的两个图形是全等形。②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上44.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等三、画轴对称图形的步骤:1、点出关键点。找出所有的关键点,即图形中所有线段的端点。2、确定关键点到对称轴的距离。关键点离对称轴多远,对称点就离对称轴多远。3、点出对称点。4、连线。按照给出的一半图形将所有对称点连接成线段。5、轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴。轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合。四、等腰三角形的性质1、有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等。推论1:等腰三角形顶角的平分线平分底边且垂直于底边,也就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)。推论2:等边三角形的各角相等,且每一个角都等于60°.等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;(二)等腰三角形的判定1、有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边相等(等角对等边)推论1、三个角都相等的三角形是等边三角形。推论2、有一个角等于60°的等腰三角形是等边三角形。推论3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。1.等腰三角形的性质①.等腰三角形的两个底角相等。(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)5等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。③等腰三角形的三边关系:设腰长为a,底边长为b,则b/2a④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=(180°-∠A)/2等腰三角形的性质与判定中线1、等腰三角形底边上的中线垂直底边,平分顶角;2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。判定1、两边上中线相等的三角形是等腰三角形;2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形角平分线1、等腰三角形顶角平分线垂直平分底边;2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。判定;1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。高线1、等腰三角形底边上的高平分顶角、平分底边;2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。判定:1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;2、有两条高相等的三角形是等腰三角形。角边等边对等角底的一半腰长周长的一半判定:等角对等边两边相等的三角形是等腰三角形4、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。6三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论4:三角形一条中线和与它相交的中位线互相平分。结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。第3章勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。3.经过证明被确认正确的命题叫做定理。我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)4.直角三角形的性质(1)、直角三角形的两个锐角互余。可表示如下:∠C=90°∠A+∠B=90°(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。∠A=30°可表示如下:BC=21AB∠C=90°(3)、直角三角形斜边上的中线等于斜边的一半∠ACB=90°可表示如下:CD=21AB=BD=AD7D为AB的中点5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°BDADCD2ABADAC2CD⊥ABABBDBC26、常用关系式由三角形面积公式可得:ABCD=ACBC7、直角三角形的判定1、有一个角是直角的三角形是直角三角形。2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系222cba,那么这个三角形是直角三角形。9、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论4:三角形一条中线和与它相交的中位线互相平分。结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。8第4章实数一、平方根(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果ax2,那么x叫做a的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。(3)平方与开平方互为逆运算:3的平方等于9,9的平方根是3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a的正的平方根可用a表示,a也是a的算术平方根;正数a的负的平方根可用-a表示.(6)ax2—axa是x的平方x的平方是ax是a的平方根a的平方根是x2、算术平方根(1)算术平方根的定义:一般地,如果一个正数x的平方等于a,即ax2,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式ax2(x≥0)中,规定ax。(2)a的结果有两种情况:当a是完全平方数时,a是一个有限数;当a不是一个完全平方数时,a是一个无限不