1/14圆一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;二、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②ABCD③CEDE④弧BC弧BD⑤弧AC弧AD中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。即:在⊙O中,∵AB∥CD∴弧AC弧BD例题1、基本概念1.下面四个命题中正确的一个是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心2.下列命题中,正确的是().A.过弦的中点的直线平分弦所对的弧B.过弦的中点的直线必过圆心C.弦所对的两条弧的中点连线垂直平分弦,且过圆心D.弦的垂线平分弦所对的弧例题2、垂径定理1、在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm,那么油面宽度AB是________cm.OEDCBAOCDAB2/142、在直径为52cm的圆柱形油槽内装入一些油后,,如果油面宽度是48cm,那么油的最大深度为________cm.3、如图,已知在⊙O中,弦CDAB,且CDAB,垂足为H,ABOE于E,CDOF于F.(1)求证:四边形OEHF是正方形.(2)若3CH,9DH,求圆心O到弦AB和ABCOEDbca的距离.4、已知:△ABC内接于⊙O,AB=AC,半径OB=5cm,圆心O到BC的距离为3cm,求AB的长.5、如图,F是以O为圆心,BC为直径的半圆上任意一点,A是的中点,AD⊥BC于D,求证:AD=21BF.例题3、度数问题1、已知:在⊙O中,弦cm12AB,O点到AB的距离等于AB的一半,求:AOB的度数和圆的半径.2、已知:⊙O的半径1OA,弦AB、AC的长分别是2、3.求BAC的度数。例题4、相交问题如图,已知⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠BED=30°,求CD的长.例题5、平行问题在直径为50cm的⊙O中,弦AB=40cm,弦CD=48cm,且AB∥CD,求:AB与CD之间的距离.例题6、平行与相似已知:如图,AB是⊙O的直径,CD是弦,于CDAEE,CDBF于F.求证:FDEC.ABDCEOOABDEFC3/14六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。即:①AOBDOE;②ABDE;③OCOF;④弧BA弧BD七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。推论:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。【例1】用直角钢尺检查某一工件是否恰好是半圆环形,根据图形3-3-19所表示的情形,四个工件哪一个肯定是半圆环形?【例2】如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求BC、AD和BD的长.【例3】如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm.(1)求证:AC⊥OD;(2)求OD的长;【例4】四边形ABCD中,AB∥DC,BC=b,AB=AC=AD=a,如图,求BD的长.FEDCBAOCBAO4/14EDCBA例5:如图1,AB是⊙O的直径,点CDE,,都在⊙O上,若CDE∠∠∠,则AB∠∠º.例6如图2,⊙O的直径CD过弦EF的中点G,40EOD,则DCF.八、圆内接四边形圆内接四边形对角互补,外角等于内对角。圆内接梯形为等腰梯形,圆内接平行四边形为矩形。判断四点共圆的方法之一:圆内接四边形对角互补。例1、如图7-107,⊙O中,两弦AB∥CD,M是AB的中点,过M点作弦DE.求证:E,M,O,C四点共圆.例1(1)已知圆内接四边形ABCD中,∠A:∠B:∠C=2:3:4,求∠D的度数.(2)已知圆内接四边形ABCD中,如图所示,AB、BC、CD、AD的度数之比为1:2:3:4,求∠A、∠B、∠C、∠D的度数.图1ABCDEOEFCDGO图22·CDO5/14PBAO九、直线与圆的位置关系图形公共点个数d与r的关系直线与圆的位置关系0dr相离1d=r相切2dr相交切线:经过半径外端并且垂直于这条半径的直线是圆的切线。符号语言∵OA⊥l于A,OA为半径∴l为⊙O的切线判断直线是圆的切线的方法:①与圆只有一个交点的直线是圆的切线。②圆心到直线距离等于圆的半径的直线是圆的切线。③经过半径外端,垂直于这条半径的直线是圆的切线。(请务必记住证明切线方法:有交点就连半径证垂直;无交点就作垂直证半径)性质定理:切线垂直于过切点的半径推论1:过圆心垂直于切线的直线必过切点。推论2:过切点垂直于切线的直线必过圆心。十、切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。lAO6/14CADBO利用切线性质计算线段的长度例1:如图,已知:AB是⊙O的直径,P为延长线上的一点,PC切⊙O于C,CD⊥AB于D,又PC=4,⊙O的半径为3.求:OD的长.利用切线性质计算角的度数例2:如图,已知:AB是⊙O的直径,CD切⊙O于C,AE⊥CD于E,BC的延长线与AE的延长线交于F,且AF=BF.求:∠A的度数.利用切线性质证线段相等例4:如图,已知:AB是⊙O直径,CO⊥AB,CD切⊙O于D,AD交CO于E.求证:CD=CE.利用切线性质证两直线垂直例5:如图,已知:△ABC中,AB=AC,以AB为直径作⊙O,交BC于D,DE切⊙O于D,交AC于E.求证:DE⊥AC.经典例题:例1.如图,△ABC内接于⊙O,AB是⊙O的直径,∠CAD=∠ABC,判断直线AD与⊙O的位置关系,并说明理由。7/14OABOPBAC例2.如图,OA=OB=13cm,AB=24cm,⊙O的半径为5cm,AB与⊙O相切吗?为什么?例3.如图,PA、PB是⊙O的切线,切点为A、B,C是⊙O上一点,若∠P=40°,求∠C的度数。例4.如图所示,ABCRt中,90C,以AC为直径作⊙O交AB于D,E为BC中点。求证:DE是⊙O的切线.十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。(2)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。(3)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如右图)。PODCBADECBPAO·ABCEOD8/14例1.如图,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。例2.⊙O中的两条弦AB与CD相交于E,若AE=6cm,BE=2cm,CD=7cm,那么CE=_________cm。例3.P是⊙O外一点,PC切⊙O于点C,PAB是⊙O的割线,交⊙O于A、B两点,如果PA:PB=1:4,PC=12cm,⊙O的半径为10cm,则圆心O到AB的距离是___________cm。例4.如图,AB为⊙O的直径,过B点作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D,(1)求证:;(2)若AB=BC=2厘米,求CE、CD的长。例6.如图,在直角三角形ABC中,∠A=90°,以AB边为直径作⊙O,交斜边BC于点D,过D点作⊙O的切线交AC于E。求证:BC=2OE。三角形内切圆9/14概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形外接圆与内切圆比较:名称确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形的内部.内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三边的距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.求三角形的内切圆的半径1、直角三角形△ABC内切圆⊙O的半径为2cbar.例题:例1.如图,△ABC中,∠A=m°.(1)如图(1),当O是△ABC的内心时,求∠BOC的度数;(2)如图(2),当O是△ABC的外心时,求∠BOC的度数;(3)如图(3),当O是高线BD与CE的交点时,求∠BOC的度数.例2.如图,Rt△ABC中,AC=8,BC=6,∠C=90°,⊙I分别切AC,BC,AB于D,E,F,求Rt△ABC的内心I与外心O之间的距离.ABCOEDbca10/14练习:1、如图,⊙O是ABC的内切圆,D、E、F为切点,::4:3:2ABC,则DEF.FEC.2.直角三角形的两条直角边为5㎝、12㎝,则此直角三角形的外接圆半径为㎝,内切圆半径为㎝.3.如图,直线AB、BC、CD分别与⊙O相切于点E、F、G,且AB∥CD,若OB=6㎝,OC=8㎝,则BOC,⊙O的半径=㎝,BE+CG=㎝.考点速练:1.如图1,⊙O内切于△ABC,切点为D,E,F.已知∠B=50°,∠C=60°,连结OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°图1图2图32.如图2,⊙O是△ABC的内切圆,D,E,F是切点,∠A=50°,∠C=60°,则∠DOE=()A.70°B.110°C.120°D.130°3.如图3,△ABC中,∠A=45°,I是内心,则∠BIC=()A.112.5°B.112°C.125°D.55°4.下列命题正确的是()·AOCDBBBEFGB·AOCDBBBEF11/14A.三角形的内心到三角形三个顶点的距离相等B.三角形的内心不一定在三角形的内部C.等边三角形的内心,外心重合D.一个圆一定有唯一一个外切三角形5.在Rt△ABC中,∠C=90°,AC=3,AB=5,则它的内切圆与外接圆半径分别为()A.1.5,2.5B.2,5C.1,2.5D.2,2.56.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别切于D,E,F.(1)求证:BF=CE;(2)若∠C=30°,CE=23,求AC的长.十四、圆内正多边形的计算十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180nRl;(2)扇形面积公式:213602nRSlRn:圆心角R:扇形多对应的圆的半径l:扇形弧长S:扇形面积2、圆柱:(1)圆柱侧面展开图2SSS侧表底=222rhr(2)圆柱的体积:2VrhSlBAO母线长底面圆周长C1D1DCBA12/143.圆锥侧面展开图(1)SSS侧表底=2Rrr(2)圆锥的体积:213Vrh有关弧长公式的应用例1如图,Rt△ABC的斜边AB=35,AC=21,点O在AB边上,OB=20,一个以O为圆心的圆,分别切两直角边边BC、AC于D、E两点,求弧DE的长度.有关阴影部分面积的求法例2如图所示,等腰直角三角形ABC的斜边4AB,O是AB的中点,以O为圆心的半圆分别与两腰相切于D、E.求圆中阴影部分的面积.求曲面上最短距离例3如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是()A.2B.42C.43D.5求圆锥的侧面积例4如图10,这是