二次函数最经典综合提高题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1周村区城北中学二次函数综合提升寒假作业题一、顶点、平移1、抛物线y=-(x+2)2-3的顶点坐标是().(A)(2,-3);(B)(-2,3);(C)(2,3);(D)(-2,-3)2、若,,,,,123351AyByCy444为二次函数2yx4x5的图象上的三点,则123yyy、、的大小关系是A.123yyyB.213yyyC.312yyyD.132yyy3、二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2C.D.4、下列二次函数中,图象以直线x=2为对称轴,且经过点(0,1)的是()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x−2)2−3D.y=(x+2)2−35、将二次函数245yxx化为2()yxhk的形式,则y.6二次函数与y=kx2﹣8x+8的图象与x轴有交点,则k的取值范围是()A.k<2B.k<2且k≠0C.k≤2D.k≤2且k≠07、由二次函数1)3(22xy,可知()A.其图象的开口向下B.其图象的对称轴为直线3xC.其最小值为1D.当3x时,y随x的增大而增大.二、a、b、c与图象的关系1、如图为抛物线2yaxbxc的图像,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()A.a+b=-B.a-b=-1C.b2aD.ac02、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是-4C.-1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大xy-11123、如图所示的二次函数2yaxbxc的图象中,刘星同学观察得出了下面四条信息:(1)240bac;(2)c1;(3)2a-b0;(4)a+b+c0。你认为其中错误..的有A.2个B.3个C.4个D.1个4、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为1,12,下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确的个数是()A.1B.2C.3D.4三、列表法、增减性1、下列函数中,当x0时y值随x值增大而减小的是().A.y=x2B.y=x-1C.y=34xD.y=1x2、二次函数223yxx的图象如图所示.当y<0时,自变量x的取值范围是().A.-1<x<3B.x<-1C.x>3D.x<-1或x>33、已知二次函数的图象(0≤x≤3)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值4、已知函数12)3(2xxky的图象与x轴有交点,则k的取值范围是A.4kB.4kC.4k且3kD.4k且3k5、如图,抛物线y=x2+1与双曲线y=kx的交点A的横坐标是1,则关于x的不等式kx+x2+10的解集是()A.x1B.x−1C.0x1D.−1x06、如图,已知二次函数cbxxy2的图象经过点(-1,0),(1,-2),当y随x的增大而增大时,x的取值范围是.第6题图3四、函数图象综合1、已知函数))((bxaxy(其中ab)的图象如下面图所示,则函数baxy的图象可能正确的是2、二次函数2yaxbxc的图象如图所示,则反比例函数ayx与一次函数ybxc在同一坐标系中的大致图象是().3、下列四个函数图象中,当x0时,函数值y随自变量x的增大而减小的是()五、对称性、二次函数与一元二次方程的关系1、已知二次函数22yxxm的部分图象如右图所示,则关于x的一元二次方程220xxm的解为.2、如图,已知二次函数cbxxy2的图象经过点(-1,0),(1,-2),该图象与x轴的另一个交点为C,则AC长为.yx11O(A)yx1-1O(B)yx-1-1O(C)1-1xyO(D)xy(第2题)O11(1,-2)cbxxy2-1ABC4六、解答题1、如图,△OAB是边长为2的等边三角形,过点A的直线。轴交于点与Exmxy33(1)求点E的坐标(2)求过A、O、E三点的抛物线解析式;(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积S,求S的最大值。2、如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(3分)(2)求点B的坐标;(3分)(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0),使S△ABD=S△ABC,求点D的坐标.(4分)53、(2011贵州安顺,27,12分)如图,抛物线y=21x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).⑴求抛物线的解析式及顶点D的坐标;⑵判断△ABC的形状,证明你的结论;⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.4、如图,直线33xy交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).⑴求抛物线的解析式;⑵在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.第27题图yxOCBA65.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.(4)直接写出以D、C、Q为顶点的三角形与△AOC相似的点D的坐标6.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.77.如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.8.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.89、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?10、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?销售单价x(元/件)…2030405060…每天销售量(y件)…500400300200100…911、如图,在平面直角坐标系中,直线123yx交x轴于点P,交y轴于点A,抛物线212yxbxc的图象过点(1,0)E,并与直线相交于A、B两点.⑴求抛物线的解析式(关系式);⑵过点A作ACAB交x轴于点C,求点C的坐标;⑶除点C外,在坐标轴上是否存在点M,使得MAB是直角三角形?若存在,请求出点M的坐标,若不存在,请说明理由.1012、如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功