人教新课标版八年级数学下册每章知识点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十一章《三角形》知识归纳与三角形有关的线段(1)定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.①边:AB,BC,CA或a,b,c②顶点:A,B,C③角:CBA,,(2)三角形的分类①等边三角形底和腰不相等的三角形等腰三角形不等边三角形三角形按边)(②钝角三角形锐角三角形斜三角形直角三角形三角形按角(3)三角形的主要线段①三角形的中线:顶点与对边中点的连线,三中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三角角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)(4)三角形三边间的关系.①两边之和大于第三边bacacbcba,,②两边之差小于第三边acbcbabac,,(5)三角形的稳定性:三角形的三条边确定后,三角形的形状和大小不变了,这个性质叫做三角形的稳定性.三角形的稳定性在生产和生活中有广泛的应用.第十二章《全等三角形》知识归纳一、全等三角形1、定义:能够完全重合的两个三角形叫做全等三角形。①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。2、全等三角形性质..(1)全等三角形的对应边相等、对应角相等。①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。(2)全等三角形的周长相等、面积相等。(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定..边边边:三边对应相等的两个三角形全等(可简写成“SSS”)BcAbCa边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:方法指引证明两个三角形全等的基本思路:(1):已知两边----找第三边(SSS)找夹角(SAS)(2):已知一边一角---已知一边和它的邻角找是否有直角(HL)已知一边和它的对角找这边的另一个邻角(ASA)找这个角的另一个边(SAS)找这边的对角(AAS)找一角(AAS)已知角是直角,找一边(HL)(3):已知两角---找两角的夹边(ASA)找夹边外的任意边(AAS)练习二、角的平分线:从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。性质:角的平分线上的点到角的两边的距离相等.判定:角的内部到角的两边的距离相等的点在角的平分线上。三、学习全等三角形应注意以下几个问题:1、要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;2、表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;3、时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”第十三章《轴对称》知识归纳轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到.轴对称变换的性质(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2)经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.作一个图形关于某条直线的轴对称图形(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.关于坐标轴对称点P(x,y)关于x轴对称的点的坐标是(x,-y)点P(x,y)关于y轴对称的点的坐标是(-x,y)关于原点对称点P(x,y)关于原点对称的点的坐标是(-x,-y)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);等腰三角形有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.特别的:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上的中线、角平分线、高线对应相等.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).特别的:(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形.(2)有两边上的角平分线对应相等的三角形是等腰三角形.(3)有两边上的中线对应相等的三角形是等腰三角形.(4)有两边上的高线对应相等的三角形是等腰三角形.等边三角形:三条边都相等的三角形叫做等边三角形,也叫做正三角形.等边三角形的性质:等边三角形的三个内角都相等,并且每一个内角都等于60°等边三角形的判定方法(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.角平分线的性质:在角平分线上的点到角的两边的距离相等.角平分线的判定:到角的两边距离相等的点在角的平分线上.三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离相等.添加辅助线口诀:几何证明难不难,关键常在辅助线;知中点、作中线,倍长中线把线连.线段垂直平分线,常向两端来连线.线段和差及倍分,延长截取全等现;公共角、公共边,隐含条件要挖掘;平移对称加旋转,全等图形多变换.角平分线取一点,可向两边作垂线;也可将图对折看,对称之后关系现;角平分线加平行,等腰三角形来添;角平分线伴垂直,三线合一试试看。第十四章《整式的乘法与因式分解》知识归纳整式的有关概念1、代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。2、单项式:只含有数字与字母的积的代数式叫做单项式。注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示。多项式1、多项式:几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。①单项式和多项式统称整式。②用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。③注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。2、同类项:所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。3、去括号法则①括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。②括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。4、整式的运算法则:整式的加减法:(1)去括号;(2)合并同类项。ABCPMNOABCPMNO整式的乘法:),(都是正整数nmaaanmnm),(都是正整数)(nmaamnnm)()(都是正整数nbaabnnn22))((bababa2222)(bababa2222)(bababa整式的除法:)0,,(anmaaanmnm都是正整数注意:(1)单项式乘单项式的结果仍然是单项式。(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。(5)公式中的字母可以表示数,也可以表示单项式或多项式。(6)),0(1);0(10为正整数paaaaapp(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。因式分解1、因式分解:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。2、因式分解的常用方法(1)提公因式法:)(cbaacab(2)运用公式法:))((22bababa222)(2bababa222)(2bababa(3)分组分解法:))(()()(dcbadcbdcabdbcadac(4)十字相乘法:))(()(2qapapqaqpa3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:二项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。第十五章《分式》知识归纳分式:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式分式的基本性质(1)分数的基本性质:一般地,对于任意一个分数ab有ab=a·cb·cab=a÷cb÷c(c≠0)(2)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。上述性质可以用式子表示为:AB=A·CB·C,AB=A÷CB÷C(C≠0),其中A,B,C是整式。(3)最简分式:分子与分母没有公因式的分式,叫做最简分式。(4)分式的约分:约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。经过约分后的分式,其分子与分母没有公因式。分式的约分,一般要约去分子和分母所有的公因式,使所得结果成为最简分式或者整式。(5)分式的通分:使分子和分母同乘适当的整式,不改变分式的值,把两个分式变成分母相同的分式,这样的分式变形叫做分式的通分。(6)最简公分母:各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母。分式的乘除(1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。ab·cd=a·cb·d(2)除法法则:分式除以分式,把除式的分子,分母颠倒位置后,与被除式相乘。ab÷cd=ab·dc=a·db·c(3)乘方法则:分式乘方要把分子、分母分别乘方。(ab)n=anbn分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。上述法则用

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功