管理运筹学作业答案MBA

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

运筹学作业答案-1-第1章线性规划基本性质P471—1(2)解:设每天从i煤矿2,1i运往j城市3,2,1j的煤为ijx吨,该问题的LP模型为:3,2,1;2,10200150100250200..85.681079min2313221221112322211312112322211312112131jixxxxxxxxxxxxxtsxxxxxxxcijijijijP481—2(2)0,)2(33)1(0..max21212121xxxxxxtsxxz解:21RR,则该LP问题无可行解。31x-10(1)(2)1R2R2x运筹学作业答案-2-P481—2(3)0,)2(55)1(0..102min21212121xxxxxxtsxxz解:目标函数等值线与函数约束(2)的边界线平行,由图可知则该LP问题为多重解(无穷多最优解)。4545550212121xxxxxx则10,45,45**1zXT(射线QP上所有点均为最优点)P481—2(4)0,)3(22)2(825)1(1043..1110min2121212121xxxxxxxxtsxxz11x-50(1)(2)2xQZ=0Z=10-1P运筹学作业答案-3-解:由图可知Q点为最优点。713768251043212121xxxxxx则29,713,76**zXTP481—3(2)0,1466473..243min2143213213214321xxxxxxxxxxxxtsxxxxz0,,,,,,,,14666473..2243max,1765//4/4//3/32171//4/4//3/3216//3/3215//3/321//4/4//3/321//4/44//3/331xxxxxxxxxxxxxxxxxxxxxxxxxxxtsxxxxxxzxxxxxxx令自由变量看作一函数约束解:把1x2x(1)(2)(3)Z=011zQ运筹学作业答案-4-P491—5解:可行域的极点与基本可行解是一一对应的。(1)对于TX8,0,0,7,92,不满足约束条件8527454321xxxxx,即TX8,0,0,7,92不是可行解,也就不是基本可行解,故不是该可行域的极点。(2)对于TX0,20,0,15,51,是可行解。此时基变量为421,,xxx,由此得到的基矩阵为0274131012,所以TX0,20,0,15,51不是基本解,也就不是基本可行解,故不是该可行域的极点。(3)对于TX0,0,10,5,153,是可行解。此时基变量为321,,xxx,由此得到的基矩阵为0174031112,所以TX0,0,10,5,153不是基本解,也就不是基本可行解,故不是该可行域的极点。P501—812345678A(2.9)11120000100B(2.1)12001023100C(1.2)20314620100余料00.30.90.40.50.20.81.1解:设按第j种截法下料8,,2,1jxj根,该问题的LP模型为:8,,2,10100264321003221002..min76543187521432187654321jxxxxxxxxxxxxxxxxtsxxxxxxxxj运筹学作业答案-5-第2章单纯形法P702—1(2)解:标准化为0,,,,52426155..2max543215214213221xxxxxxxxxxxxxtsxxz,容易得0,5,24,15,0,000zXT第一次迭代:121,2max则1x为进基变量(此时2x仍为非基变量)52461551413xxxxx05062401515143xxxxx1562411xx则4x为进基变量,6为主元161324613115554242132xxxxxxxx此时:8,1,0,15,0,4313186131422114224221zXxxxxxxxzT第二次迭代:0312则2x为进基变量032103140515252123xxxxxx3/213/14515222xxx则5x为进基变量,32为主元2323414613115554242132xxxxxxxx23234127214121521545542541543xxxxxxxxx运筹学作业答案-6-此时:217,0,0,215,23,2721412173123412331831318225445442zXxxxxxxxzT此时0j,则217,23,27**zXT(图解法略)注意由方程组形式求的每个基本可行解与图解法求得的可行域的极点之间的一一对应关系。P702—2(1)解:化标准形为:0,,,25.01..22max432142132121xxxxxxxxxxtsxxzjc2200iBCBXb1x2x3x4x03x1111004x25.0101j2200,021而它所对应的系数列向量TT0,05.0,11则该LP问题无最优解(无界解)。运筹学作业答案-7-补充作业:求解下列LP问题:0,,6033320422603..336max321321321321321xxxxxxxxxxxxtsxxxz解:标准化后求解过程如下:jc633000iBCBXb1x2x3x4x5x6x04x603111002005x10(1)120101006x2011100120j63300004x3004513030/461x10112010——06x100(2)30115j03906004x1000111261x15101/201/21/232x501-3/20-1/21/2j00-9/20-9/2-3/20j,则最优解为:75,0,5,15**zXT运筹学作业答案-8-P702—2(4)解:建立该LP问题的大M法辅助问题如下:0,,,,,,223824..32max765432175216432176321xxxxxxxxxxxxxxxxtsMxMxxxxzjc23100MMiBCBXb1x2x3x4x5x6x7xM6x81(4)210102M7x632001013j24m36m12mmm0032x21/411/24/101/408M7x2(5/2)011/212/114/5j4525m0m21432mm4323m032x5901(3/5)10/31/103/1010/121x54105/21/55/25/12/5j0002/11/213x305/312/11/61/21/621x212/3001/301/3j0001/21/2由于出现非基变量的检验数为0,故该LP问题有多重解。TTXX3,0,2,0,59,54*2*1运筹学作业答案-9-则最优解为:TTXXX3,0,210,59,541*2*1*3359562107*运筹学作业答案-10-P712—2(5)解:目标函数化标准形为:43212maxxxxxz函数约束添加人工变量765,,xxx,拟采用两阶段法求解。第一阶段:两阶段法辅助问题目标函数为:765/maxxxxzjc0000111iBCBXb1x2x3x4x5x6x7x15x2(1)121100216x62131010317x711110017j410100001x21121100-----16x20(3)732102/317x502121015/2j058530001x8/310-1/301/31/30-----02x2/301-7/31-2/31/30-----17x11/300(11/3)01/3-2/311j0011/30-2/3-5/3001x310004/113/111/1102x30101-5/11-1/117/1103x100101/11-2/113/11j0000111运筹学作业答案-11-由第一阶段最终单纯形表可得0*/z,故原LP问题存在可行基,转入第二阶段继续求解。第二阶段:求解原LP问题。jc2111iBCBXb1x2x3x4x21x31000-----12x3010(1)313x10010------j000221x3100014x3010113x10010j0200此时,0j故原LP问题的最优解为:2,3,1,0,3**TX补充作业:求解下列LP问题:0,,1628420424224..2max32132121321321xxxxxxxxxxxtsxxxz解:建立大M法的辅助问题如下:0,,,,,,1628420424224..2max76543216321521743217321xxxxxxxxxxxxxxxxxxxtsMxxxxz运筹学作业答案-12-jc211000MiBCBXb1x2x3x4x5x6x7xM7x4(4)221001105x2024001001006x1648200104j24m12m12mm00021x111/21/2-1/4001/4——05x180311/210-1/23606x12060(1)01112j0001/20021m21x412(1/2)001/40805x1200101-1/20——04x120601011——j03000-1/2m13x8241001/2005x20240010004x120601011j03000-1/2m该LP问题有多重解。TTXX8,0,0,0,0,4*2*1最优解为:88048,0,010,0,41*2*1*TTXXX10,8*z运筹学作业答案-13-第3章对偶原理P923—1(1)(2)(4)(1)0,,40322603..634max321321321321xxxxxxxxxtsxxxz0,6332423..4060min2121212121yyyyyyyytsyy(2)0,,12123..201060min321321321321321xxxxxxxxxxxxtsxxx0,,20102603..2max321321321321321yyyyyyyyyy

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功