2010年山东省高考数学试卷(文科)答案与解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12010年山东省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•山东)已知全集U=R,集合M={x|x2﹣4≤0},则∁UM=()A.{x|﹣2<x<2}B.{x|﹣2≤x≤2}C.{x|x<﹣2或x>2}D.{x|x≤﹣2或x≥2}【考点】补集及其运算.菁优网版权所有【专题】集合.【分析】由题意全集U=R,集合M={x|x2﹣4≤0},然后根据交集的定义和运算法则进行计算.【解答】解:因为M={x|x2﹣4≤0}={x|﹣2≤x≤2},全集U=R,所以CUM={x|x<﹣2或x>2},故选C.【点评】本题考查集合的补集运算、二次不等式的解法等基础知识,属基础题.2.(5分)(2010•山东)已知,其中i为虚数单位,则a+b=()A.﹣1B.1C.2D.3【考点】复数代数形式的混合运算.菁优网版权所有【专题】数系的扩充和复数.【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.3.(5分)(2010•山东)函数f(x)=log2(3x+1)的值域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)【考点】函数的值域.菁优网版权所有【专题】函数的性质及应用.【分析】函数的定义域为R,结合指数函数性质可知3x>0恒成立,则真数3x+1>1恒成立,再结合对数函数性质即可求得本题值域.【解答】解:根据对数函数的定义可知,真数3x+1>0恒成立,解得x∈R.因此,该函数的定义域为R,原函数f(x)=log2(3x+1)是由对数函数y=log2t和t=3x+1复合的复合函数.由复合函数的单调性定义(同増异减)知道,原函数在定义域R上是单调递增的.根据指数函数的性质可知,3x>0,所以,3x+1>1,所以f(x)=log2(3x+1)>log21=0,故选A.【点评】本题考查了对数复合函数的单调性,复合函数的单调性知识点,高中要求不高,只需同学们掌握好“同増异减“原则即可;本题还考查了同学们对指数函数性质(如:3x>0)的掌握,这是指数函数求定义域和值域时常用知识.24.(5分)(2010•山东)在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【考点】空间中直线与平面之间的位置关系.菁优网版权所有【专题】空间位置关系与距离.【分析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理,可以很容易得出答案.【解答】解:平行直线的平行投影重合,还可能平行,A错误.平行于同一直线的两个平面平行,两个平面可能相交,B错误.垂直于同一平面的两个平面平行,可能相交,C错误.故选D.【点评】本题考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题.5.(5分)(2010•山东)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(﹣1)=()A.﹣3B.﹣1C.1D.3【考点】奇函数.菁优网版权所有【专题】函数的性质及应用.【分析】首先由奇函数性质f(0)=0求出f(x)的解析式,然后利用定义f(﹣x)=﹣f(x)求f(﹣1)的值.【解答】解:因为f(x)为定义在R上的奇函数,所以f(0)=20+2×0+b=0,解得b=﹣1,所以当x≥0时,f(x)=2x+2x﹣1,又因为f(x)为定义在R上的奇函数,所以f(﹣1)=﹣f(1)=﹣(21+2×1﹣1)=﹣3,故选A.【点评】本题考查奇函数的定义f(﹣x)=﹣f(x)与基本性质f(0)=0(函数有意义时).6.(5分)(2010•山东)在某项体育比赛中,七位裁判为一选手打出的分数如下:90899095939493去掉一个最高分和一个最低分后,所剩数的平均值和方差分别为()A.92,2B.92,2.8C.93,2D.93,2.8【考点】众数、中位数、平均数;极差、方差与标准差.菁优网版权所有【专题】概率与统计.【分析】平均数就将剩余5个数的和除以5即可得到;方差就是将数据代入方差公式s2=[(x1﹣)2+(x2﹣)2+(x3﹣)2+…+(xn﹣)2]即可求得.【解答】解:由题意知,所剩数据为90,90,93,94,93,所以其平均值为90+(3+4+3)=92;3方差为(22×2+12×2+22)=2.8,故选B.【点评】本题考查平均数与方差的求法,属基础题.7.(5分)(2010•山东)设{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】等比数列.菁优网版权所有【专题】等差数列与等比数列.【分析】首项大于零是前提条件,则由“q>1,a1>0”来判断是等比数列{an}是递增数列.【解答】解:若已知a1<a2,则设数列{an}的公比为q,因为a1<a2,所以有a1<a1q,解得q>1,又a1>0,所以数列{an}是递增数列;反之,若数列{an}是递增数列,则公比q>1且a1>0,所以a1<a1q,即a1<a2,所以a1<a2是数列{an}是递增数列的充分必要条件.故选C【点评】本题考查等比数列及充分必要条件的基础知识,属保分题.8.(5分)(2010•山东)已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为()A.13万件B.11万件C.9万件D.7万件【考点】利用导数求闭区间上函数的最值.菁优网版权所有【专题】导数的概念及应用.【分析】由题意先对函数y进行求导,解出极值点,然后再根据函数的定义域,把极值点和区间端点值代入已知函数,比较函数值的大小,求出最大值即最大年利润的年产量.【解答】解:令导数y′=﹣x2+81>0,解得0<x<9;令导数y′=﹣x2+81<0,解得x>9,所以函数y=﹣x3+81x﹣234在区间(0,9)上是增函数,在区间(9,+∞)上是减函数,所以在x=9处取极大值,也是最大值.故选:C.【点评】本题考查导数在实际问题中的应用,属基础题.9.(5分)(2010•山东)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线与A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()A.x=1B.x=﹣1C.x=2D.x=﹣2【考点】抛物线的简单性质.菁优网版权所有【专题】圆锥曲线的定义、性质与方程.4【分析】先假设A,B的坐标,根据A,B满足抛物线方程将其代入得到两个关系式,再将两个关系式相减根据直线的斜率和线段AB的中点的纵坐标的值可求出p的值,进而得到准线方程.【解答】解:设A(x1,y1)、B(x2,y2),则有y12=2px1,y22=2px2,两式相减得:(y1﹣y2)(y1+y2)=2p(x1﹣x2),又因为直线的斜率为1,所以=1,所以有y1+y2=2p,又线段AB的中点的纵坐标为2,即y1+y2=4,所以p=2,所以抛物线的准线方程为x=﹣=﹣1.故选B.【点评】本题考查抛物线的几何性质、直线与抛物线的位置关系等基础知识.10.(5分)(2010•山东)观察(x2)′=2x,(x4)′=4x3,y=f(x),由归纳推理可得:若定义在R上的函数f(x)满足f(﹣x)=f(x),记g(x)为f(x)的导函数,则g(﹣x)=()A.f(x)B.﹣f(x)C.g(x)D.﹣g(x)【考点】奇函数;归纳推理.菁优网版权所有【专题】函数的性质及应用.【分析】首先由给出的例子归纳推理得出偶函数的导函数是奇函数,然后由g(x)的奇偶性即可得出答案.【解答】解:由给出的例子可以归纳推理得出:若函数f(x)是偶函数,则它的导函数是奇函数,因为定义在R上的函数f(x)满足f(﹣x)=f(x),即函数f(x)是偶函数,所以它的导函数是奇函数,即有g(﹣x)=﹣g(x),故选D.【点评】本题考查函数奇偶性及类比归纳推理能力.11.(5分)(2010•山东)函数y=2x﹣x2的图象大致是()A.B.C.D.【考点】函数的图象与图象变化.菁优网版权所有【专题】函数的性质及应用.【分析】充分利用函数图象中特殊点加以解决.如函数的零点2,4;函数的特殊函数值f(﹣2)符号加以解决即可.【解答】解:因为当x=2或4时,2x﹣x2=0,所以排除B、C;5当x=﹣2时,2x﹣x2=,故排除D,所以选A.【点评】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.12.(5分)(2010•山东)定义平面向量之间的一种运算“⊙”如下:对任意的,令,下面说法错误的是()A.若与共线,则⊙=0B.⊙=⊙C.对任意的λ∈R,有⊙=⊙)D.(⊙)2+()2=||2||2【考点】平面向量数量积的运算.菁优网版权所有【专题】平面向量及应用.【分析】根据题意对选项逐一分析.若与共线,则有,故A正确;因为,而,所以有,故选项B错误,对于C,⊙=λqm﹣λpn,而⊙)=λ(qm﹣pn)=λqm﹣λpn,故C正确,对于D,(⊙)2+()2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=||2||2,D正确;得到答案.【解答】解:对于A,若与共线,则有,故A正确;对于B,因为,而,所以有,故选项B错误,对于C,⊙=λqm﹣λpn,而⊙)=λ(qm﹣pn)=λqm﹣λpn,故C正确,对于D,(⊙)2+()2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=||2||2,D正确;故选B.【点评】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力.二、填空题(共4小题,每小题4,满分16分)13.(4分)(2010•山东)执行如图所示的程序框图,若输入x=10,则输出y的值为.6【考点】程序框图.菁优网版权所有【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量y的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序在运行过程中各变量的值如下表示:xy是否继续循环循环前10∥第一圈104是第二圈41是第三圈1﹣是第四圈﹣﹣否故输出y的值为.故答案为:【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.14.(4分)(2010•山东)已知x,y∈R+,且满足,则xy的最大值为3.【考点】基本不等式.菁优网版权所有【专题】不等式的解法及应用.【分析】本题为利用基本不等式求最值,可直接由条件出发,求解.7【解答】解:因为x>0,y>0,所以(当且仅当,即x=,y=2时取等号),于是,,xy≤3.故答案为:3【点评】本题主要考查了用基本不等式解决最值问题的能力,属基本题.15.(4分)(2010•山东)△ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=2,sinB+cosB=,则角A的大小为.【考点】同角三角函数基本关系的运用;二倍角的正弦;正弦定理.菁优网版权所有【专题】解三角形.【分析】由条件由sinB+cosB=得1+2sinBcosB=2,即sin2B=1,根据三角形的内角和定理得到0<B<π得到B的度数.利用正弦定理求出A即可.【解答】解:由sinB+cosB=得1+2sinBcosB=2,即sin2B=1,因为0<B<π,所以B=45°,b=2,所以在△

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功