2019年中考数学知识点过关培优训练:图形的变化(对称+平移+旋转+相似+视图+锐角三角函数)(附答

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019年中考数学知识点过关培优训练:图形的变化一.选择题1.把下列英文字母看成图形,是轴对称图形的是()A.B.C.D.2.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则下列三角函数表示正确的是()A.tanA=B.tanB=C.sinA=D.cosA=3.中国的汉字博大精深.下面四个黑体汉字中,不是轴对称的是()A.品B.里C.用D.且4.鲁班锁,民间也称作孔明锁、八卦锁,它起源于中国古代建筑中首创的棒卯结构,下图是鲁班锁的其中一个部件,它的主视图是()A.B.C.D.5.如图,Rt△ABC中,∠BAC=90°,AB=AC,将△ABC绕点C顺时针旋转40°得到△A′B′C,CB′与AB相交于点D,连接AA′,则∠B′A′A的度数为()A.10°B.15°C.20°D.30°6.在Rt△ACB中,∠C=90°,AC=8,sinA=,点D是AB中点,则CD的长为()A.4B.5C.6D.77.如图,在△ABC中,AB=AC,AD,BE是△ABC的两条中线,P是AD上一动点,则下列线段的长度等于PC+PE的最小值的是()A.BEB.ADC.ACD.BC8.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)9.在矩形ABCD中,AB=6,AD=9,点E为线段AD上一点,且DE=2AE,点G是线段AB上的动点,EF⊥EG交BC所在直线于点F,连接GF.则GF的最小值是()A.3B.6C.6D.310.如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M则下列结论①∠AME=90°;②∠BAF=∠EDB;③MD=2AM=4EM;④AM=MF,其中正确结论的个数是()A.4个B.3个C.2个D.1个二.填空题11.如图,在4×5的正方形网格中点A,B,C都在格点上,则tan∠ABC=.12.如图,△ABC中,AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA=.13.如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=8cm,EF=15cm,则边AD的长是cm.14.如图,△ABC是边长为6的等边三角形,点D在边AB上,AD=2,点E是BC上一点连结DE,将DE绕点D逆时针旋转60°得DF,连结CF,则CF的最小值是.15.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是千米.16.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积(阴影部分)是△ABC面积的一半,若BC=2,则△ABC移动的距离是.17.如图,四边形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=m,点P是边BC上一动点,若△PAB与△PCD相似,且满足条件的点P恰有2个,则m的值为.18.如图所示,等边△ABC中D点为AB边上一动点,E为直线AC上一点,将△ADE沿着DE折叠,点A落在直线BC上,对应点为F,若AB=4,BF:FC=1:3,则线段AE的长度为.19.如图,△ABC中,D、E两点分别在AB、BC上,若AD:DB=CE:EB=2:3,则△DBE的面积:△ADC的面积=.20.在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD'P,PD的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E,F.现有以下结论:①连接DD',则AP垂直平分DD';②四边形PMBN是菱形;③AD2=DP•PC;④若AD=2DP,则;其中正确的结论是(填写所有正确结论的序号)三.解答题21.北盘江大桥坐落于云南宜威与贵州水城交界处,横跨云贵两省,为目前世界第一高桥图1是大桥的实物图,图2是从图1中引申出的平面图,测得桥护栏BG=1.8米,拉索AB与护栏的夹角是26°,拉索ED与护栏的夹角是60°,两拉素底端距离BD为300m,若两拉索顶端的距离AE为90m,请求出立柱AH的长.(tan26°≈0.5,sin26°≈0.4,1.7)22.某公园内有一如图所示地块,已知∠A=30°,∠ABC=75°,AB=BC=8米,求C点到人行道AD的距离(结果保留根号).23.如图,直线l1∥l2∥l3,AC分别交l1,l2,l3于点A,B,C;DF分别交l1,l2,l3于点D,E,F;AC与DF交于点O.已知DE=3,EF=6,AB=4.(1)求AC的长;(2)若BE:CF=1:3,求OB:AB.24.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C.(0,0)(1)将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1,画出△A1B1C1,并直接写出点A1的坐标;(2)△ABC绕原点O逆时针方向旋转90°得到△A2B2O;(3)如果△A2B2O,通过旋转可以得到△A1B1C1,请直接写出旋转中心P的坐标25.如图1,点D、C、F、B共线,AC=DF=3,BC=EF=4,∠ACB=∠DFE=90°.点A在DE上,EF与AB交点为G.现固定△ABC,将△DEF沿CB方向平移,当点F与点B重合,停止运动.设BF=x.(1)如图1,请写出图中所有与△DEF相似的三角形(全等除外);(2)如图2,在△DEF运动过程中,设△CGF的面积为y,求当x为何值时y取得最大值?最大值为多少?(3)如图2,在△DEF运动过程中,若△ACG为等腰三角形,请直接写出x的值.26.已知:如图,△ABC是等边三角形,点D是平面内一点,连接CD,将线段CD绕C顺时针旋转60°得到线段CE,连接BE,AD,并延长AD交BE于点P.(1)当点D在图1所在的位置时①求证:△ADC≌△BEC;②求∠APB的度数;③求证:PD+PE=PC;(2)如图2,当△ABC边长为4,AD=2时,请直接写出线段CE的最大值.27.折叠矩形ABCD,使点D落在BC边上的点F处.(1)求证:△ABF∽△FCE;(2)若DC=8,CF=4,求矩形ABCD的面积S.28.已知:点A、B在∠MON的边OM上,作AC⊥OM,BD⊥OM,分别交ON于C、D两点.(1)若∠MON=45°.①如图1,请直接与出线段AB和CD的数量关系.②将△AOC绕点O逆时针旋转到如图2的位置,连接AB、CD,猜想线段AB和CD的数量关系,并证明你的猜想.(2)若∠MON=α(0°<α<90°),如图3,请直接写出线段OC、OD、AB之间的数量关系.(用含α的式子表示)29.某校数学课外实践小组一次活动中,测量一座楼房的高度.如图,在山坡坡脚A处测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°,已知山坡的坡比i=1:,OA=200m,且O、A、D在同一条直线上.(1)求楼房OB的高度;(2)求山坡上AC的距离(结果保留根号)30.问题情景:如图1,在等腰直角三角形ABC中∠ACB=90°,BC=a.将AB绕点B顺时针旋转90°得到线段BD,连接CD,过点D作△BCD的BC边上的高DE.易证△ABC≌△BDE,从而得到△BCD的面积为.简单应用:如图2,在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含a的代数式表示△BCD的面积,并说明理由.参考答案1.解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.2.解:∵∠ACB=90°,AB=13,BC=12,∴,∴tanA=,故选项A错误;tanB=,故选项B错误;sinA=,故选项C错误;cosA=,故选项D正确.故选:D.3.解:A、“品”字是轴对称,故此选项不合题意;B、“里”字是轴对称,故此选项不合题意;C、“用”字不是轴对称,故此选项符合题意;D、“且”字是轴对称,故此选项不合题意;故选:C.4.解:它的主视图是:.故选:C.5.解:∵将△ABC绕点C顺时针旋转40°得到△A′B′C,∴△ABC≌△A'B'C∴AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90°∴∠AA'C=70°=∠A'AC∴∠B'A'A=∠B'A'C﹣∠AA'C=20°故选:C.6.解:依照题意,画出图形,如图所示.设BC=3x,则AB=5x,AC==4x,∴4x=8,∴x=2,∴AB=5x=10.∵在Rt△ACB中,∠C=90°,AB=10,点D是AB中点,∴CD=AB=5.故选:B.7.解:如图,连接PB,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PC+PE=PB+PE,∵PE+PB≥BE,∴P、B、E共线时,PB+PE的值最小,最小值为BE的长度,故选:A.8.解:∵A(1,0)的对应点A′的坐标为(2,﹣1),∴平移规律为横坐标加1,纵坐标减1,∵点B(0,3)的对应点为B′,∴B′的坐标为(1,2).故选:D.9.解:如图,过点F作FM⊥AD于M,∵四边形ABCD为矩形,∴∠A=∠EMF=90°,MF=AB=6,∵EF⊥GE,∴∠AGE+∠AEG=90°,∠AEG+∠MEF=90°,∴∠AGE=∠MEF,∴△AEG∽△MFE,∴=,设AG=x,∵AD=9,DE=2AE,∴AE=3,∴=,∴ME=2x,∴BF=AM=3+2x,在Rt△GBF中,GF2=GB2+BF2=(6﹣x)2+(3+2x)2=5x2+45,∵点G在线段AB上,∴0≤x≤6,由二次函数的性质可知,当x=0时,GF2有最小值45,∴GF的最小值为3,故选:D.10.解:(1)∵四边形ABCD为正方形,∴AD=AB=∴BC,∠DAE=∠ABF=90°,∵E、F分别为正方形ABCD的边AB,BC的中点,∴AE=AB,BF=BC,∴AE=BF,∴△DAE≌△ABF(SAS),∴∠BAF=∠ADE,∵∠BAF+∠DAM=90°,∴∠ADE+∠DAM=90°,∴∠AME=∠ADE+∠DAM=90°,故①正确;(2)设AF与BD交于点N,正方形ABCD的边长为4,则AE=BE=BF=2,∴DE=AF==2,∵AD∥BF,∴△BFN∽△DAN,∴==,∴FN=,AN=,∵S△AED=AD•AE=DE•AM,∴AM===,∴MN=AF﹣AM﹣NF=,∴AM≠MN,若∠BAF=∠EDB,则∠ADE=∠EDB,又∵DM=DM,∠DMA=∠DMN=90°,∴△DAM≌△DNM(ASA),∴AM=MN,不符合题意,故②错误;(3)由(1)知,∠BAF=∠ADE,又∵∠AME=∠EAD=∠AMD=90°,∴△AME∽△DMA∽△DAE,∴===,∴AM=2EM,DM=2AM,∴MD=2AM=4EM,故③正确;(4)由(2)知AM=,MN=,FN=,∴MF=MN+FN=+=,∴=,故④正确;故选:B.二.填空题(共10小题)11.解:过点C作CE⊥AB于点E,如图所示.∵S△ABC=AC•3=AB•CE,即×2×3=×3•CE,∴CE=.在Rt△BCE中,BC=,CE=,∴BE==2,∴tan∠ABC==.故答案为:.12.解:∵在△ABC中,AB=AC,∠C=72°,∴∠ABC=∠C=72°,∠A=180°﹣∠C﹣∠ABC=36°.∵D是AB中点,DE⊥AB,∴AE=BE,∠ABE=∠A=36°,∴∠BEC=∠A+∠ABE=72°=∠C,∴BE=BC=AE.设BC=x,则CE=AC﹣AE=4﹣x.∵∠ABC=∠BEC,∠C=∠C,∴△ABC∽△BEC,∴=,即=,解得:x1=2﹣2,x2=﹣2﹣2(舍去),∴cosA===.故答案

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功