C'=0(C为常数函数);(x^n)'=nx^(n-1)(n∈Q*);熟记1/X的导数(sinx)'=cosx;(cosx)'=-sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2(secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2(arccosx)'=-1/(1-x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)(arcsecx)'=1/(|x|(x^2-1)^1/2)(arccscx)'=-1/(|x|(x^2-1)^1/2)(sinhx)'=hcoshx(coshx)'=-hsinhx(tanhx)'=1/(coshx)^2=(sechx)^2(coth)'=-1/(sinhx)^2=-(cschx)^2(sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx(arsinhx)'=1/(x^2+1)^1/2(arcoshx)'=1/(x^2-1)^1/2(artanhx)'=1/(x^2-1)(|x|1)(arcothx)'=1/(x^2-1)(|x|1)(arsechx)'=1/(x(1-x^2)^1/2)(arcschx)'=1/(x(1+x^2)^1/2)(e^x)'=e^x;(a^x)'=a^xlna(ln为自然对数)(Inx)'=1/x(ln为自然对数)(logax)'=(xlna)^(-1),(a0且a不等于1)(x^1/2)'=[2(x^1/2)]^(-1)(1/x)'=-x^(-2).y=c(c为常数)y'=0.y=x^ny'=nx^(n-1).y=a^xy'=a^xlnay=e^xy'=e^xy=lnxy'=1/x.y=sinxy'=cosx.y=cosxy'=-sinx.y=tanxy'=1/cos^2x.y=cotxy'=-1/sin^2x.y=arcsinxy'=1/√1-x^2.y=arccosxy'=-1/√1-x^2.y=arctanxy'=1/1+x^2.y=arccotxy'=-1/1+x^2按照公式代就行了y=f(x)=c(c为常数),则f'(x)=0f(x)=x^n(n不等于0)f'(x)=nx^(n-1)(x^n表示x的n次方)f(x)=sinxf'(x)=cosxf(x)=cosxf'(x)=-sinxf(x)=a^xf'(x)=a^xlna(a0且a不等于1,x0)f(x)=e^xf'(x)=e^xf(x)=logaXf'(x)=1/xlna(a0且a不等于1,x0)f(x)=lnxf'(x)=1/x(x0)f(x)=tanxf'(x)=1/cos^2xf(x)=cotxf'(x)=-1/sin^2x导数运算法则如下(f(x)+/-g(x))'=f'(x)+/-g'(x)(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2