第1页(共27页)八年级(下)特殊平行四边形培优一.选择题(共13小题)1.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α2.(2012•河南模拟)如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,则S△CEF:S△DGF等于()A.2:1B.3:1C.4:1D.5:13.(2005•湖州)如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD,CD的延长线分别交于AB,AC于点E,F.若=6,则△ABC的边长为()A.B.C.D.14.(2002•无锡)已知:四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是()第2页(共27页)A.1<MN<5B.1<MN≤5C.<MN<D.<MN≤5.(2015•鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015C.()2015D.()20146.(2013•渝中区校级模拟)如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD于E点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE;⑤CF=BD.正确的有()个.A.2B.3C.4D.57.(2012•重庆模拟)如图,正方形ABCD中,点E是对角线BD上一点,点F是边BC上一点,点G是边CD上一点,BE=2ED,CF=2BF,连接AE并延长交CD于G,连接AF、EF、FG.给出下列五个结论:①DG=GC;②∠FGC=∠AGF;③S△ABF=S△FCG;④AF=EF;⑤∠AFB=∠AEB.其中正确结论的个数是()A.5个B.4个C.3个D.2个第3页(共27页)8.(2012•鹿城区校级二模)如图,在正方形ABCD中,四边形IJFH是正方形,面积为S1,四边形BEFG是矩形,面积为S2,下列说法正确的是()A.S1>S2B.S1=S2C.S1<S2D.2S1=3S29.(2011•承德县一模)如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A.B.C.D.10.(2011•瑞安市校级一模)如图,E,F分别是矩形ABCD边AD、BC上的点,且△ABG,△DCH的面积分别为15和20,则图中阴影部分的面积为()A.15B.20C.35D.4011.(2011春•内江期末)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中有正确结论的个数是()A.2个B.3个C.4个D.5个12.(2010•盘锦)已知如图,矩形ABCD中AB=4cm,BC=3cm,点P是AB上除A,B外任一点,对角线AC,BD相交于点O,DP,CP分别交AC,BD于点E,F且△ADE和BCF的面积之和4cm2,则四边形PEOF的面积为()第4页(共27页)A.1cm2B.1.5cm2C.2cm2D.2.5cm213.(1997•内江)如图,四边形ABCD和MNPQ都是边长为a的正方形,点A是MNPQ的中心(即两条对角线MP和NQ的交点),点E是AB与MN的交点,点F是NP与AD的交点,则四边形AENF的面积是()A.B.C.D.二.填空题(共17小题)14.(2015•广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.15.(2015•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.16.(2014•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.第5页(共27页)17.(2013•乌鲁木齐)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.18.(2013•南岗区校级一模)如图,AD、BE为△ABC的中线交于点O,∠AOE=60°,OD=,OE=,则AB=.19.(2012•枣庄)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.20.(2015•凉山州)菱形0BCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.21.(2015•天水)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为.第6页(共27页)22.(2015•潮南区一模)如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,…已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,…Sn(n为正整数),那么第8个正方形面积S8=.23.(2014•南岗区二模)如图,正方形ABCD的对角线AC、BD相交于点O,∠CAB的平分线交BD于点E,交BC于点F.若OE=1,则CF=.24.(2013•德州)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).25.(2013•广安区校级模拟)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论,其中正确的有(填正确结论的序号).①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2.第7页(共27页)26.(2013•金城江区一模)如图,点P是矩形ABCD的边AD的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是.27.(2013•锡山区校级三模)如图,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEPH的面积为5cm2,则四边形PFCG的面积为cm2.28.(2013•成都模拟)将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…An分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.29.(2013•郑州模拟)如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,2),B点在x轴上,对角线AC,BD交于点M,OM=,则点C的坐标为.第8页(共27页)参考答案与试题解析一.选择题(共13小题)1.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.2.(2012•河南模拟)如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,则S△CEF:S△DGF等于()A.2:1B.3:1C.4:1D.5:1【解答】解:如图,取CG的中点H,连接EH,∵E是AC的中点,∴EH是△ACG的中位线,∴EH∥AD,∴∠GDF=∠HEF,∵F是DE的中点,∴DF=EF,在△DFG和△EFH中,,∴△DFG≌△EFH(ASA),∴FG=FH,S△EFH=S△DGF,又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,∴S△EFC=3S△EFH,∴S△EFC=3S△DGF,因此,S△CEF:S△DGF=3:1.故选B.第9页(共27页)3.(2005•湖州)如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD,CD的延长线分别交于AB,AC于点E,F.若=6,则△ABC的边长为()A.B.C.D.1【解答】解:过点A作直线PQ∥BC,延长BD交PQ于点P;延长CD,交PQ于点Q.∵PQ∥BC,∴△PQD∽△BCD,∵点D在△ABC的中位线上,∴△PQD与△BCD的高相等,∴△PQD≌△BCD,∴PQ=BC,∵AE=AC﹣CE,AF=AB﹣BF,在△BCE与△PAE中,∠PAE=∠ACB,∠APE=∠CBE,∴△BCE∽△PAE,=…①同理:△CBF∽△QAF,=…②①+②,得:+=.∴+=3,又∵=6,AC=AB,∴△ABC的边长=.故选C.4.(2002•无锡)已知:四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是()第10页(共27页)A.1<MN<5B.1<MN≤5C.<MN<D.<MN≤【解答】解:连接BD,过M作MG∥AB,连接NG.∵M是边AD的中点,AB=2,MG∥AB,∴MG是△ABD的中位线,BG=GD,MG=AB=×2=1;∵N是BC的中点,BG=GD,CD=3,∴NG是△BCD的中位线,NG=CD=×3=,在△MNG中,由三角形三边关系可知NG﹣MG<MN<MG+NG,即﹣1<MN<+1,∴<MN<,当MN=MG+NG,即MN=时,四边形ABCD是梯形,故线段MN长的取值范围是<MN≤.故选D.5.(2015•鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015C.()2015D.()2014【解答】方法一:第11页(共27页)解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形AnBnCnDn的边长是:()n﹣1.则正方形A2015B2015C2015D2015的边长是:()2014.故选:D.方法二:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,∴D1E1=B2E2=,∵B1C1∥B2C2∥B3C3…∴∠E2B2C2=60°,∴B2C2=,同理:B3C3=×=…∴a1=1,q=,∴正方形A2015B2015C2015D2015