小康老师中考数学专题复习--新定义型问题一、中考专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力。近几年日照命题情况来看,该类题型为必考型,一般一道选择或填空再加一道答题,占12到18分。二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考典例剖析考点一:规律题型中的新定义例1(2013•湛江)阅读下面的材料,先完成阅读填空,再按要求答题:sin30°=12,cos30°=32,则sin230°+cos230°=;①sin45°=22,cos45°=22,则sin245°+cos245°=;②sin60°=32,cos60°=12,则sin260°+cos260°=.③…观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=.④(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;(2)已知:∠A为锐角(cosA>0)且sinA=35,求cosA.思路分析:①②③将特殊角的三角函数值代入计算即可求出其值;④由前面①②③的结论,即可猜想出:对任意锐角A,都有sin2A+cos2A=1;(1)如图,过点B作BD⊥AC于D,则∠ADB=90°.利用锐角三角函数的定义得出sinA=BDAB,cosA=ADAB,则sin2A+cos2A=222BDADAB,再根据勾股定理得到BD2+AD2=AB2,从而证明sin2A+cos2A=1;(2)利用关系式sin2A+cos2A=1,结合已知条件cosA>0且sinA=35,进行求解.解:∵sin30°=12,cos30°=32,∴sin230°+cos230°=(12)2+(32)2=14+34=1;①∵sin45°=22,cos45°=22,∴sin245°+cos245°=(22)2+(22)2=12+12=1;②∵sin60°=32,cos60°=12,∴sin260°+cos260°=(32)2+(12)2=34+14=1.③观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=1.④(1)如图,过点B作BD⊥AC于D,则∠ADB=90°.∵sinA=BDAB,cosA=ADAB,∴sin2A+cos2A=(BDAB)2+(ADAB)2=222BDADAB,∵∠ADB=90°,∴BD2+AD2=AB2,∴sin2A+cos2A=1.(2)∵sinA=35,sin2A+cos2A=1,∠A为锐角,∴cosA=2341()55.点评:本题考查了同角三角函数的关系,勾股定理,锐角三角函数的定义,比较简单.对应训练1.(2013•绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:23AOAD;(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足23AOAD,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究BCHGAGHSSV四边形的最大值.2.(1)证明:如答图1所示,连接CO并延长,交AB于点E.∵点O是△ABC的重心,∴CE是中线,点E是AB的中点.∴DE是中位线,∴DE∥AC,且DE=12AC.∵DE∥AC,∴△AOC∽△DOE,∴AOACODDE=2,∵AD=AO+OD,∴AOAD=23.(2)答:点O是△ABC的重心.证明:如答图2,作△ABC的中线CE,与AD交于点Q,则点Q为△ABC的重心.由(1)可知,AOAD=23,而AOAD=23,∴点Q与点O重合(是同一个点),∴点O是△ABC的重心.(3)解:如答图3所示,连接DG.设S△GOD=S,由(1)知AOAD=23,即OA=2OD,∴S△AOG=2S,S△AGD=S△GOD+S△AGO=3S.为简便起见,不妨设AG=1,BG=x,则S△BGD=3xS.∴S△ABD=S△AGD+S△BGD=3S+3xS=(3x+3)S,∴S△ABC=2S△ABD=(6x+6)S.设OH=k•OG,由S△AGO=2S,得S△AOH=2kS,∴S△AGH=S△AGO+S△AOH=(2k+2)S.∴S四边形BCHG=S△ABC-S△AGH=(6x+6)S-(2k+2)S=(6x-2k+4)S.∴BCHGAGHSSV四边形=(6-24)(22)xkSkS=3-21xkk①如答图3,过点O作OF∥BC交AC于点F,过点G作GE∥BC交AC于点E,则OF∥GE.∵OF∥BC,∴23OFAOCDAD,∴OF=23CD=13BC;∵GE∥BC,∴11GEAGBCABx,∴GE=1BCx;∴131BCOFBCGEx=13x,∴13(1)OFxGEOFx=12xx.∵OF∥GE,∴OHOFGHGE,∴1-2-OHOFxOGGEOFx,∴k=12-xx,代入①式得:BCHGAGHSSV四边形=13-23-22-1112-xxxkxxkx=-x2+x+1=-(x-12)2+54,∴当x=12时,BCHGAGHSSV四边形有最大值,最大值为54.考点二:运算题型中的新定义例2(2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5。(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.思路分析:(1)按照定义新运算a⊕b=a(a-b)+1,求解即可;(2)先按照定义新运算a⊕b=a(a-b)+1,得出3⊕x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范围,即可在数轴上表示.解:(1)∵a⊕b=a(a-b)+1,∴(-2)⊕3=-2(-2-3)+1=10+1=11;(2)∵3⊕x<13,∴3(3-x)+1<13,9-3x+1<13,-3x<3,x>-1.在数轴上表示如下:点评:本题考查了有理数的混合运算及一元一次不等式的解法,属于基础题,理解新定义法则是解题的关键.对应训练2.(2013•十堰)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a]=-2,那么a的取值范围是.(2)如果[12x]=3,求满足条件的所有正整数x.2.解:(1)∵[a]=-2,∴a的取值范围是-2≤a<-1;(2)根据题意得:3≤[12x]<4,解得:5≤x<7,则满足条件的所有正整数为5,6.考点三:探索题型中的新定义例3(2013•钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2B.3C.4D.5思路分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.解:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选C.点评:本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键.对应训练3.(2013•台州)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图在Rt△ABC中,∠C=90°,tanA=32,求证:△ABC是“好玩三角形”;(3))如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC和AD-DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求as的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)3.解:(1)如图1,①作一条线段AB,②作线段AB的中点O,③作线段OC,使OC=AB,④连接AC、BC,∴△ABC是所求作的三角形.(2)如图2,取AC的中点D,连接BD∵∠C=90°,tanA=32,∴BCAC=32,∴设BC=3x,则AC=2x,∵D是AC的中点,∴CD=12AC=x∴BD=22223CDBCxx=2x,∴AC=BD∴△ABC是“好玩三角形”;(3)①如图3,当β=45°,点P在AB上时,∴∠ABC=2β=90°,∴△APQ是等腰直角三角形,不可能是“好玩三角形”,当P在BC上时,连接AC交PQ于点E,延长AB交QP的延长线于点F,∵PC=CQ,∴∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴2AEAFABBPsCEPCPCas.∵PE=CE,∴2AEsPEas.Ⅰ当底边PQ与它的中线AE相等时,即AE=PQ时,2AEsPEas=2,∴as=34,Ⅱ当腰AP与它的中线QM相等,即AP=QM时,作QN⊥AP于N,如图4∴MN=AN=12MP.∴QN=15MN,∴tan∠APQ=153QNMNPNMN=153,∴tan∠APE=2AEsPEas=153,∴as=1510+12。②由①可知,当AE=PQ和AP=QM时,有且只有一个△APQ能成为“好玩三角形”,∴153<tanβ<2时,有且只有一个△APQ能成为“好玩三角形”.(4)由(3)可以知道0<tanβ<153,则在P、Q的运动过程中,使得△APQ成为“好玩三角形”的个数为2.考点四:开放题型中的新定义例4(2013•宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.思路分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在»BC上任意