第1页共88页二次函数一、选择题1.(2015,广西柳州,11,3分)如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2B.﹣2<x<4C.x>0D.x>4[来#源%:@&中教网*]考点:抛物线与x轴的交点.分析:利用当函数值y>0时,即对应图象在x轴上方部分,得出x的取值范围即可.解答:解:如图所示:当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选:B.点评:此题主要考查了抛物线与x轴的交点,利用数形结合得出是解题关键.2.(2015,广西玉林,12,3分)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2kB.a=b﹣2kC.k<b<0D.a<k<0考点:二次函数的性质;反比例函数图象上点的坐标特征.专题:计算题.分析:把(﹣,m)代入y=ax2+bx图象的顶点坐标公式得到顶点(﹣,﹣),再把(﹣,﹣)代入得到k=,由图象的特征即可得到结论.解答:解:∵y=ax2+bx图象的顶点(﹣,m),∴﹣=﹣,即b=a,∴m==﹣,[中#国~教育@*出%版网]∴顶点(﹣,﹣),把x=﹣,y=﹣代入反比例解析式得:k=,第2页共88页由图象知:抛物线的开口向下,∴a<0,∴a<k<0,故选D.点评:本题考查了二次函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.3.(2015,广西河池,8,3分)将抛物线y=x2向右平移2个单位,再向上平移3个单位后,抛物线的解析式为(B)A.y=(x+2)2+3B.y=(x-2)2+3C.y=(x+2)2﹣3D.y=(x-2)-3[中国教育出版~*#%@网]解析:左加右减,上加下减,故选B1.(2015•内蒙古赤峰8,3分)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()[来源:%zzste&p.co~m*#]A.B.C.D.[来源:&@中国教育出%^*版网]考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:根据二次函数图象与系数的关系确定a>0,b<0,c<0,根据一次函数和反比例函数的性质确定答案.解答:解:由抛物线可知,a>0,b<0,c<0,[来源:zz&step*.~@^com]∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,[*zz%step.#~co^m]故选:B.第3页共88页点评:本题考查的是二次函数、一次函数和反比例函数的图象与系数的关系,掌握二次函数、一次函数和反比例函数的性质是解题的关键.4.(2015•齐齐哈尔,第9题3分)抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确结论的个数是()[中国教&育%出@版网*#][来&源:#中教^%网~]A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:根据函数与x中轴的交点的个数,以及对称轴的解析式,函数值的符号的确定即可作出判断.[来&源#%:中^*教网]解答:解:函数与x轴有两个交点,则b2﹣4ac>0,即4ac﹣b2<0,故①正确;函数的对称轴是x=﹣1,即﹣=﹣1,则b=2a,2a﹣b=0,故②正确;当x=1时,函数对应的点在x轴下方,则a+b+c<0,则③正确;[来源:#*~zzste@p.^com]则y1和y2的大小无法判断,则④错误.[ww*w.z~z#st%ep.com@]故选C.[中国教*育&@^#出版网]点评:本题考查了二次函数的性质,主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子.[来源:zz^ste*&p.c~o%m]5.(2015•内蒙古呼伦贝尔兴安盟,第11题3分)二次函数y=(x+2)2﹣1的图象大致为()A.B.C.考点:二次函数的图象..第4页共88页分析:根据函数解析式判断出抛物线的对称轴、开口方向和顶点坐标即可.解答:解:a=1>0,抛物线开口向上,由解析式可知对称轴为x=﹣2,顶点坐标为(﹣2,﹣1).[中^国教育~@出*版网#]故选:D.点评:本题主要考查的是二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.6.(2015•天津,第12题3分)(2015•天津)已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.考点:抛物线与x轴的交点..分析:令y=0,则﹣x2+x+6=0,由此得到A、B两点坐标,由D为AB的中点,知OD的长,x=0时,y=6,所以OC=6,根据勾股定理求出CD即可.解答:解:令y=0,则﹣x2+x+6=0,[中^#国教@育出&%版网]解得:x1=12,x2=﹣3∴A、B两点坐标分别为(12,0)(﹣3,0)∵D为AB的中点,∴D(4.5,0),∴OD=4.5,[中@国教育#出版&%网~]当x=0时,y=6,∴OC=6,[来源:~中%&国教育^出*版网]∴CD==.故选:D.[@z^ste%#p.com~]点评:本题主要考查了二次函数与一元二次方程的关系和抛物线的对称性,求出AB中点D的坐标是解决问题的关键.7.(2015•贵州省贵阳,第10题3分)已知二次函数y=﹣x2+2x+3,当x≥2时,y的取值范围是()A.y≥3B.y≤3C.y>3D.y<3考点:二次函数的性质..[^&st#ep.co*m~]分析:先求出x=2时y的值,再求顶点坐标,根据函数的增减性得出即可.解答:解:当x=2时,y=﹣4+4+3=3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,[来~源^@:中教&网%]∴当x>1时,y随x的增大而减小,∴当x≥2时,y的取值范围是y≤3,故选B.点评:本题考查了二次函数的性质的应用,能理解二次函数的性质是解此题的关键,数形结合思想的应用.[*^z&st@#ep.com]第5页共88页8.(2015•贵州省黔东南州,第10题4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()[来%源:@~z&z#step.com]A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣,可得﹣,b<0,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.解答:解:∵二次函数y=ax2+bx+c图象经过原点,[中国教育@出~^版*网&]∴c=0,[中^国教@育出版~*&网]∴abc=0∴①正确;[中#国教@育出&%版网^]∵x=1时,y<0,∴a+b+c<0,[*ep.c@om~]∴②不正确;[来*源@%:中~教^网]∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,[来源:中国#%&教育出*@版网]∴b2﹣4ac>0,4ac﹣b2<0,[w~ww.zz&ste%p.#com@]∴④正确;综上,可得正确结论有3个:①③④.故选:C.[来#%源:中国教育&出版^网@]点评:此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要第6页共88页明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).[来源:@中教网*&%9.(2015•黑龙江省大庆,第9题3分)已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是()[来源#~@:*zzstep&.com]A.y1+y2>0B.y1﹣y2>0C.a(y1﹣y2)>0D.a(y1+y2)>0考点:二次函数图象上点的坐标特征.分析:分a>0和a<0两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.解答:解:①a>0时,二次函数图象开口向上,[来源:zz~step.^c%om]∵|x1﹣2|>|x2﹣2|,∴y1>y2,无法确定y1+y2的正负情况,a(y1﹣y2)>0,②a<0时,二次函数图象开口向下,∵|x1﹣2|>|x2﹣2|,[w*ww~.z^z#step.com&]∴y1<y2,无法确定y1+y2的正负情况,a(y1﹣y2)>0,综上所述,表达式正确的是a(y1﹣y2)>0.故选C.点评:本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性,难点在于根据二次项系数a的正负情况分情况讨论.10.(2015•辽宁省盘锦,第8题3分)如图是二次函数y=ax2+bx+c=(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有()第7页共88页A.①③④B.②④⑤C.①②⑤D.②③⑤考点:二次函数图象与系数的关系..分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线开口向下,[*@.com]∴a<0,∵﹣=﹣2,∴b=4a,ab>0,∴①错误,④正确,∵抛物线与x轴交于﹣4,0处两点,[来源:z^@zstep&.co*%m]∴b2﹣4ac>0,方程ax2+bx=0的两个根为x1=0,x2=﹣4,∴②⑤正确,∵当a=﹣3时y>0,即9a﹣3b+c>0,∴③错误,故正确的有②④⑤.[中国教&^~育#出*版网]故选:B.[中%国教育^@*出版网#]点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用11.(4分)(2015•黔西南州)(第9题)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A.B.C.D.[来源:中~*国教@%育出版网^]考点:动点问题的函数图象;二次函数的图象.第8页共88页专题:压轴题;动点型.分析:解决本题的关键是正确确定y与x之间的函数解析式.解答:解:∵运动时间x(s),则CP=x,CO=2x;∴S△CPO=CP•CO=x•2x=x2.∴则△CPO的面积y(cm2)与运动时间x(s)之间的函数关系式是:y=x2(0≤x≤3),[来&%源~^:@中教网]故选:C.[来@源:中国教育出&^*%版网]点评:解决本题的关键是读懂图意,确定函数关系式.[w*ww.z#@z&step.c^om]二、填空题1.(2015•宁德第15