高中物理圆周运动练习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高中物理圆周运动练习题1.如图3-1所示,两根轻绳同系一个质量m=0.1kg的小球,两绳的另一端分别固定在轴上的A、B两处,上面绳AC长L=2m,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s时,上下两轻绳拉力各为多少?2.如图3-2所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮半径为4r,小轮半径为2r,b点在小轮上,到小轮中心距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则()A.a点与b点线速度大小相等B.a点与c点角速度大小相等C.a点与d点向心加速度大小相等D.a、b、c、d四点,加速度最小的是b点3.如图3-4所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO/匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.图3-1图3-2图3-44.如图3-6所示,半径为R的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h处沿OB方向水平抛出一个小球,要使球与盘只碰一次,且落点为B,则小球的初速度v=____,圆盘转动的角速度ω=_____。5.如图3-7所示,小球Q在竖直平面内做匀速圆周运动,当Q球转到图示位置时,有另一小球P在距圆周最高点为h处开始自由下落.要使两球在圆周最高点相碰,则Q球的角速度ω应满足什么条件?6.绳系着装有水的水桶,在竖直面内做圆周运动,水的质量m=0.5kg,绳长L=60cm,求:①最高点水不流出的最小速率。②水在最高点速率v=3m/s时,水对桶底的压力。7.汽车质量m为1.5×104kg,以不变的速率先后驶过凹形路面和凸形路面,路面圆弧半径均为15m,如图3-17所示.如果路面承受的最大压力不得超过2×105N,汽车允许的最大速率是多少?汽车以此速率驶过路面的最小压力是多少?图3-6图3-7图3-178.使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?9.使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?1.【解析】如图3-1所示,当BC刚好被拉直,但其拉力T2恰为零,设此时角速度为ω1,AC绳上拉力设为T1,对小球有:mgT30cos1①30sinLωm=30sinTAB211②代入数据得:srad/4.21,要使BC绳有拉力,应有ωω1,当AC绳恰被拉直,但其拉力T1恰为零,设此时角速度为ω2,BC绳拉力为T2,则有mgT45cos2③T2sin45°=m22ωLACsin30°④代入数据得:ω2=3.16rad/s。要使AC绳有拉力,必须ωω2,依题意ω=4rad/sω2,故AC绳已无拉力,AC绳是松驰状态,BC绳与杆的夹角θ45°,对小球有:mgTcos2,T2cosθ=mω2LBCsinθ⑤而LACsin30°=LBCsin45°,LBC=2m⑥由⑤、⑥可解得NT3.22;01T2.【解析】由图3-2可知,a点和c点是与皮带接触的两个点,所以在传动过程中二者的线速度大小相等,即va=vc,又v=ωR,所以ωar=ωc·2r,即ωa=2ωc.而b、c、d三点在同一轮轴上,它们的角速度相等,则ωb=ωc=ωd=21ωa,所以选项B错.又vb=ωb·r=21ωar=2va,所以选项A也错.向心加速度:aa=ωa2r;ab=ωb2·r=(2ωa)2r=41ωa2r=41aa;ac=ωc2·2r=(21ωa)2·2r=21ωa2r=21aa;ad=ωd2·4r=(21ωa)2·4r=ωa2r=aa.所以选项C、D均正确3.【审题】物体A随碗一起转动而不发生相对滑动,则物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω。物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是由重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡。【解析】物体A做匀速圆周运动,向心力:RmFn2,而摩擦力与重力平衡,则有:mgFn,即:mgFn由以上两式可得:mgRm2,即碗匀速转动的角速度为:Rg4.【审题】小球做的是平抛运动,在小球做平抛运动的这段时间内,圆盘做了一定角度的圆周运动。【解析】①小球做平抛运动,在竖直方向上:h=21gt2,则运动时间t=gh2,又因为水平位移为R所以球的速度,v=tR=R·hg2②,在时间t内,盘转过的角度θ=n·2π,又因为θ=ωt,则转盘角速度:ω=tn2=2nπh2g(n=1,2,3…)5.【审题】下落的小球P做的是自由落体运动,小球Q做的是圆周运动,若要想碰,必须满足时间相等这个条件。【解析】设P球自由落体到圆周最高点的时间为t,由自由落体可得21gt2=h,求得t=gh2Q球由图示位置转至最高点的时间也是t,但做匀速圆周运动,周期为T,有t=(4n+1)4T(n=0,1,2,3……),两式联立再由T=π2得(4n+1)π2=gh2,所以ω=2π(4n+1)h2g(n=0,1,2,3……)6【审题】当v0=gR时,水恰好不流出,要求水对桶底的压力和判断是否能通过最高点,也要和这个速度v比较,vv0时,有压力;v=v0时,恰好无压力;v≤v0时,不能到达最高点。【解析】①水在最高点不流出的条件是重力不大于水做圆周运动所需要的向心力即mg<Lmv2,则最小速度v0=gR=gL=2.42m/s。②当水在最高点的速率大于v0时,只靠重力提供向心力已不足,此时水桶底对水有一向下的压力,设为F,由牛顿第二定律F+mg=mLv2得:F=2.6N。7.【审题】首先要确定汽车在何位置时对路面的压力最大,汽车经过凹形路面时,向心加速度方向向上,汽车处于超重状态;经过凸形路面时,向心加速度向下,汽车处于失重状态,所以汽车经过凹形路面最低点时,汽车对路面的压力最大。【解析】当汽车经过凹形路面最低点时,设路面支持力为FN1,受力情况如图3-18所示,由牛顿第二定律,有FN1-mg=mRv2,要求FN1≤2×105N,解得允许的最大速率vm=7.07m/s由上面分析知,汽车经过凸形路面顶点时对路面压力最小,设为FN2,如图3-19所示,由牛顿第二定律有mg-FN2=Rmv2m,解得FN2=1×105N。8.【审题】小球到达最高点A时的速度vA不能为零,否则小球早在到达A点之前就离开了圆形轨道。要使小球到达A点(自然不脱离圆形轨道),则小球在A点的速度必须满足Mg+NA=mRv2A,式图3-18图3-19中,NA为圆形轨道对小球的弹力。上式表示小球在A点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供。当NA=0时,vA最小,vA=gR。这就是说,要使小球到达A点,则应该使小球在A点具有的速度vA≥gR。【解析】以小球为研究对象。小球在轨道最高点时,受重力和轨道给的弹力。小球在圆形轨道最高点A时满足方程根据机械能守恒,小球在圆形轨道最低点B时的速度满足方程2B2Amv21=R2mg+mv21(2)解(1),(2)方程组得,当NA=0时,VB=为最小,VB=gR5,所以在B点应使小球至少具有VB=gR5的速度,才能使它到达圆形轨道的最高点A。9.以小球为研究对象。小球在轨道最高点时,受重力和轨道给的弹力。小球在圆形轨道最高点A时满足方程根据机械能守恒,小球在圆形轨道最低点B时的速度满足方程解(1),(2)方程组得轨道的最高点A。

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功