2.1空间点-直线-平面之间的位置关系

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

桌面海平面今后,一般用A、B、C表示点,a、b、c表示线,表示面,,1.平面理解:平面是无限延伸的,无大小,无厚薄之分,不可度量.几何画法:通常用平行四边形来表示平面.符号表示:通常用希腊字母等来表示,如:平面也可用表示平行四边形的两个相对顶点的字母来表示,如:平面AC.,,判断下列各题的说法正确与否,在正确的说法的题号后打,否则打.1、一个平面长4米,宽2米;()2、平面有边界;()3、一个平面的面积是25cm2;()4、平面是无限延展、没有厚度的;()5、一个平面可以把空间分成两部分.()巩固:平面的表示两个相交平面的画法和表示平面和平面相交于一条直线a被遮住的部分画虚线aa平面平面=直线a平面的表示,PlA直线和平面都可以看成点的集合“点P在直线上l”,“点A在平面α内”用集合符号表示点与直线、点与平面、直线与平面的关系“点P在直线l外”,“点A在平面α外”直线l在平面α内,或者说平面α经过直线l直线l在平面α外.,llAlP,2.平面的基本性质公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.lBAlBlA,,,作用:1、判定线在面内2、判定点是否在平面内思考1:把一根木条固定在墙面上需要几根钉子?符号语言表述:直线a在平面内记作:a直线a在平面外记作:a注:空间中线与面的位置关系强调:空间中点与线(面)只有∈和关系空间中线与面只有与的关系条件结论结论条件1条件2}推导符号“”的使用:思考2:固定一扇门需要几样东西?回答:确定一个平面需要什么条件?公理2经过不在同一条直线上的三点,有且只有一个平面.确定唯一一个平面不共线CBACBA,,,,作用:1、确定一个平面2、证明点、线共面问题.如何理解???推论1.一条直线和直线外一点确定一个平面。推论2.两条相交直线确定一个平面。推论3.两条平行直线确定一个平面。公理2.不共线的三点确定一个平面.确定一平面还有哪些方法?ACB应用:过空间中一点可以做几个平面?过空间中两点呢?三点呢?结论:过空间中一点或两点可以做无数个平面,过空间中不共线的三点只能做一个,否则有无数个。思考3:如图所示,两个平面、,若相交于一点,则会发生什么现象?Pl公理3如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.lPlP且两面共一点则两面共一线且点在线上作用:用于证明点在线上或多点共线.例题例1如图,用符号表示下列图形中点、直线、平面之间的位置关系.ABβαal(1)abPlβα(2)解:1)A,B,=l,a=A,a=B2)a,b,=l,al=P,bl=P,ab=P2.根据下列符号表示的语句,说出有关点、线、面的关系,并画出图形.BA,)1(ml,)2(l)3(QlQPlP,,,)4(3、一个平面把空间分成____部分,两个平面把空间最多分成____部分,三个平面把空间最多分成____部分.4、正方体中,试画出过其中三条棱的中点P,Q,R的平面截得正方体的截面形状.2.1.2空间中直线与直线之间的位置关系两条直线的位置关系思考1:同一平面内两条直线有几种位置关系?空间中的两条直线呢?abC两条直线的位置关系定义不同在任何一个平面内的两条直线叫做异面直线.baab异面直线的图示理解:1、两条直线永不具备确定平面的条件,因此异面直线既不相交也不平行;注意把握异面直线的不共面性2、不能把异面直线误解为分别在不同平面内的两条直线为异面直线空间中的直线与直线之间有三种位置关系:相交直线:平行直线:共面直线异面直线:不同在任何一个平面内,没有公共点同一平面内,有且只有一个公共点;同一平面内,没有公共点;如图是一个正方体的表面展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有多少对?探究FAHGEDCBCDBAEFGH直线EF和直线HG直线AB和直线CD直线AB和直线HG答:3对平行直线如图,在长方体ABCD—A′B′C′D′中,BB′∥AA′,DD′∥AA′,那么BB′与DD′平行吗?CB'C'A'D'BAD观察答:平行平行直线公理4平行于同一直线的两条直线互相平行.空间中的平行线具有传递性如果a//b,b//c,那么a//cAFEDCBABCDEF三条平行线共面三条平行线不共面平行直线已知三条直线两两平行,任取两条直线能确定一个平面,问这三条直线能确定几个平面?AFEDCBABCDEF三条平行线共面三条平行线不共面问题平行直线例2如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.FGDAEBCH所以BDEH//,且BDEH21同理BDFG//,且BDFG21因为FGEH//,且FGEH所以四边形EFGH是平行四边形.证明:连接BD,因为EH是的中位线,ABD在上例中,如果再加上条件AC=BD,那么四边形EFGH是什么图形?探究答:四边形EFGH是菱形FGDAEBCH是菱形所以平行四边形所以且,因为EFGHEHEFBDACBD21EHAC21EF等角定理在平面上,我们容易证明“如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补”.空间中,结论是否仍然成立?思考1如图,四棱柱ABCD--A′B′C′D′的底面是平行四边形,∠ADC与∠A′D′C′,∠ADC与∠B′A′D′的两边分别对应平行,这两组角的大小关系如何?思考2:BADCA'B'D'C'BADCA'B'D'C'∠ADC=∠A′D′C′∠ADC+∠B′A′D′=1800如图,在空间中AB//A′B′,AC//A′C′,你能证明∠BAC与∠B′A′C′相等吗?思考3BCAB´C´A´EE´DD´等角定理定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.等角定理推论:空间中如果两个角的两边分别对应平行且方向相同,那么这两个角相等.ABCCABABCCABBAABCAAC//,//异面直线所成的角ab思考在同一平面内两条相交直线形成四个角,常取较小的一组角来度量这两条直线的位置关系,这个角叫做两条直线的夹角.在空间中怎样度量两条异面直线的位置关系呢?ab平面内两条相交直线空间中两条异面直线abaO已知两条异面直线a,b,经过空间任一点O作直线,把与所成的锐角(或直角)叫做异面直线a与b所成的角.bbaa//,//abababO异面直线所成的角我们规定两条平行直线的夹角为0°,那么两条异面直线所成的角的取值范围是什么?90,0如果两条异面直线所成角为900,那么这两条直线垂直.探究ab记直线a垂直于b为:ab异面直线所成的角探究(1)在长方体中,有没有两条棱所在的直线是相互垂直的异面直线?DCBAABCD(2)如果两条平行直线中的一条与某一条直线垂直,那么,另一条直线是否也与这条直线垂直?(3)垂直于同一条直线的两条直线是否平行?如:,BBAD与BBDA与等.垂直AABBCCDD,,BBBCBBAB不一定,如上图的立方体中直线AB与BC相交,异面直线所成的角例3已知正方体.DCBAABCDABABCDCD(1)哪些棱所在直线与直线是异面直线?AB(2)直线和的夹角是多少?ABCC(3)哪些棱所在的直线与直线垂直?AA解:(1)由异面直线的定义可知,棱所在的直线分别与直线是异面直线.CBCDDDCCDCAD,,,,,AB(3)直线ADDCCBBADACDBCAB,,,,,,,分别与直线垂直.AA(2)由可知,CCBB//ABB为异面直线与的夹角,,所以与的夹角为.ABCC45ABCC45ABB在如图所示的长方体中,AB=,且AA1=1,求直线BA1和CD所成角的度数.3ABC1D1C1AD30O1B练习1如图,在四面体ABCD中,E,F分别是棱AD,BC上的点,且,已知AB=CD=3,,求异面直线AB和CD所成的角.12AEBFEDFC3EFAFEDCB练习22.1.3空间中直线与平面之间的位置关系直线与平面思考?1)一支铅笔所在的直线与一个作业本所在的平面,可能有几种关系?2)如图,线段A’B所在直线与长方体ABCD-A’B’C’D’的六个面所在平面有几种位置关系?CB'C'A'D'BAD直线与平面直线和平面的位置关系有且只有三种(1)直线在平面内有无数个公共点a记为:a直线与平面(2)直线与平面相交有且只有一个公共点a记为:a=AA直线与平面(3)直线与平面平行没有公共点a记为:a//直线与平面直线与平面相交或平行的情况统称为直线在平面外记为:aaa//aa=AA或直线与平面例1.下列命题中正确的个数是()1)若直线l上有无数个点不在平面内,则l//2)若直线l与平面平行,则l与平面内的任意一条直线都平行3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行4)若直线l与平面平行,则l与平面内的任意一条直线都没有公共点.(A)0(B)1(C)2(D)3B平面与平面之间的位置关系2.1.4平面与平面之间的位置关系思考(1)拿出两本书,看作两个平面,上下、左右移动和翻转,它们之间的位置关系有几种?(2)如图,围成长方体ABCD-A′B′C′D′的六个面,两两之间的位置关系有几种?CB'C'A'D'BAD两个平面的位置关系两个平面的位置关系有且只有两种①两个平面平行——没有公共点②两个平面相交——有一条公共直线.分类的依据是什么?公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.两个平面平行或相交的画法及表示//m=m已知平面,直线a、b,且//,a,b,则直线a与直线b具有怎样的位置关系?探究1ab答:平行或异面、探究2αβγablbαβγal相交于一条交线三条交线三条交线如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.•一个平面可以把空间分成几个部分?•两个平面可以把空间分成几个部分?•三个平面可以把空间分成几个部分?探究3

1 / 53
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功