山东省威海市2014年中考数学试题(word版-含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

山东省威海市2014年中考数学试卷一、选择题(共12小题,每小题3分,共36分)1.(3分)(2014•威海)若a3=8,则a的绝对值是()A.2B.﹣2C.D.﹣考点:立方根;绝对值分析:运用开立方的方法求解.解答:解:∵a3=8,∴a=2.故选:A.点评:本题主要考查开立方的知识,关键是确定符号.2.(3分)(2014•威海)下列运算正确的是()A.2x2÷x2=2xB.(﹣a2b)3=﹣a6b3C.3x2+2x2=5x2D.(x﹣3)3=x3﹣9考点:整式的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.菁分析:根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同,以及幂的乘方,合并同类项法则求解即可.解答:解:A、2x2÷x2=2,选项错误;B、(﹣a2b)3=﹣a6b3,选项错误;C、正确;D、(x﹣3)3=x3﹣27﹣9x2+27x,选项错误.故选C.点评:本题考查了单项式除单项式,以及幂的乘方,合并同类项法则,正确记忆法则是关键.3.(3分)(2014•威海)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+1考点:因式分解-提公因式法;因式分解-运用公式法.分析:分别将各选项利用公式法和提取公因式法分解因式进而得出答案.解答:解:A、x2﹣1=(x+1)(x﹣1),故此选项错误;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故此选项错误;C、x2﹣2x+1=(x﹣1)2,故此选项错误;D、x2+2x+1=(x+1)2,故此选项符合题意.故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键.4.(3分)(2014•威海)已知x2﹣2=y,则x(x﹣3y)+y(3x﹣1)﹣2的值是()A.﹣2B.0C.2D.4考点:整式的混合运算—化简求值.专题:计算题.分析:原式去括号合并后,将已知等式变形后代入计算即可求出值.解答:解:∵x2﹣2=y,即x2﹣y=2,∴原式=x2﹣3xy+3xy﹣y﹣2=x2﹣y﹣2=2﹣2=0.故选B点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.5.(3分)(2014•威海)在某中学举行的演讲比赛中,初一年级5名参赛选手的成绩如下表所示,请你根据表中提供的数据,计算出这5名选手成绩的方差()选手1号2号3号4号5号平均成绩得分9095█898891A.2B.6.8C.34D.93考点:方差分析:首先根据五名选手的平均成绩求得3号选手的成绩,然后利用方差公式直接计算即可.解答:解:观察表格知道5名选手的平均成绩为91分,∴3号选手的成绩为91×5﹣90﹣95﹣89﹣88=93分,所以方差为:[(90﹣91)2+(95﹣91)2+(93﹣91)2+(89﹣91)2+(88﹣91)2]=6.8,故选B.点评:本题考查了方差的计算,牢记方差公式是解答本题的关键.6.(3分)(2014•威海)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是()A.B.C.D.考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从正面、左面、上面所看到的图形.解答:解:A、此几何体的主视图和俯视图都是“”字形,故此选项不合题意;B、此几何体的主视图和左视图都是,故此选项不合题意;C、此几何体的主视图和左视图都是,故此选项不合题意;D、此几何体的主视图是,俯视图是,左视图是,故此选项符合题意,故选:D.点评:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.7.(3分)(2014•威海)已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.分析:根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.解答:解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.点评:本题考查了在数轴上不等式的解集,先求出不等式的解集,再把不等式的解集表示在数轴上.8.(3分)(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.考点:锐角三角函数的定义;三角形的面积;勾股定理分析:作AC⊥OB于点C,利用勾股定理求得AC和AB的长,根据正弦的定义即可求解.解答:解:作AC⊥OB于点C.则AC=,AB===2,则sin∠AOB===.故选D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9.(3分)(2014•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°考点:角平分线的性质;三角形内角和定理分析:根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.解答:解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项结论正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项结论错误;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项结论正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项结论正确.故选B.点评:本题考查了角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题的关键.10.(3分)(2014•威海)方程x2﹣(m+6)+m2=0有两个相等的实数根,且满足x1+x2=x1x2,则m的值是()A.﹣2或3B.3C.﹣2D.﹣3或2考点:根与系数的关系;根的判别式分析:根据根与系数的关系有:x1+x2=m+6,x1x2=m2,再根据x1+x2=x1x2得到m的方程,解方程即可,进一步由方程x2﹣(m+6)+m2=0有两个相等的实数根得出b2﹣4ac=0,求得m的值,求相同的解解决问题.解答:解:∵x1+x2=m+6,x1x2=m2,x1+x2=x1x2,∴m+6=m2,解得m=3或m=﹣2,∵方程x2﹣(m+6)+m2=0有两个相等的实数根,∴△=b2﹣4ac=(m+6)2﹣4m2=﹣3m2+12m+36=0解得m=6或m=﹣2∴m=﹣2.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.11.(3分)(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y轴交于原点,c=0,故①正确;该抛物线的对称轴是:,直线x=﹣1,故②正确;当x=1时,y=2a+b+c,∵对称轴是直线x=﹣1,∴,b=2a,又∵c=0,∴y=4a,故③错误;x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).故④正确.故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.12.(3分)(2014•威海)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0B.[来源:ZXXK]﹣3×()2013C.(2)2014D.3×()2013考点:规律型:点的坐标专题:规律型.分析:根据含30度的直角三角形三边的关系得OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2014=3×()2013,由于而2014=4×503+2,则可判断点A2014在y轴的正半轴上,所以点A2014的纵坐标为3×()2013.解答:解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2014=3×()2013,而2014=4×503+2,∴点A2014在y轴的正半轴上,∴点A2014的纵坐标为3×()2013.故选D.点评:本题考查了规律型:点的坐标:通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系.二、填空题(共6小题,每小题3分,共18分)13.(3分)(2014•威海)据威海市旅游局统计,今年“五一”小长假期间,我市各旅游景点门票收入约2300万元,数据“2300万“用科学记数法表示为2.3×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2300万用科学记数法表示为:2.3×107.故答案为:2.3×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)(2014•威海)计算:﹣×=.考点:二次根式的混合运算专题:计算题.分析:先根据二次根式的乘法法则运算,然后化简后合并即可.解答:解:原式=3﹣=3﹣2=.故答案为.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.15.(3分)(2014•威海)直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2=40°.考点:平行线的性质;三角形内角和定理分析:根据两直线平行,同位角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠4,然后根据对顶角相等解答.解答:解:∵l1∥l2,∴∠3=∠1=85°,∴∠4=∠3﹣45°=85°﹣45°=40°,∴∠2=∠4=40°.故答案为:40°.点评:本题

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功