2014年山东省威海市中考数学试卷一、选择题(共12小题,每小题3分,共36分)1.(3分)(2014•威海)若a3=8,则a的绝对值是()A.2B.﹣2C.D.﹣2.(3分)(2014•威海)下列运算正确的是()A.2x2÷x2=2xB.(﹣a2b)3=﹣a6b3C.3x2+2x2=5x2D.(x﹣3)3=x3﹣93.(3分)(2014•威海)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+14.(3分)(2014•威海)已知x2﹣2=y,则x(x﹣3y)+y(3x﹣1)﹣2的值是()A.﹣2B.0C.2D.45.(3分)(2014•威海)在某中学举行的演讲比赛中,初一年级5名参赛选手的成绩如下表所示,请你根据表中提供的数据,计算出这5名选手成绩的方差()选手1号2号3号4号5号平均成绩得分9095█898891A.2B.6.8C.34D.936.(3分)(2014•威海)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是()A.B.C.D.7.(3分)(2014•威海)已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.8.(3分)(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.9.(3分)(2014•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°10.(3分)(2014•威海)方程x2﹣(m+6)x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,则m的值是()A.﹣2或3B.3C.﹣2D.﹣3或211.(3分)(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.412.(3分)(2014•威海)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0B.﹣3×()2013C.(2)2014D.3×()2013二、填空题(共6小题,每小题3分,共18分)13.(3分)(2014•威海)据威海市旅游局统计,今年“五一”小长假期间,我市各旅游景点门票收入约2300万元,数据“2300万“用科学记数法表示为_________.14.(3分)(2014•威海)计算:﹣×=_________.15.(3分)(2014•威海)直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2=_________.16.(3分)(2014•威海)一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.17.(3分)(2014•威海)如图,有一直角三角形纸片ABC,边BC=6,AB=10,∠ACB=90°,将该直角三角形纸片沿DE折叠,使点A与点C重合,则四边形DBCE的周长为_________.18.(3分)(2014•威海)如图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是_________.三、解答题(共7小题,共66分)19.(7分)(2014•威海)解方程组:.20.(8分)(2014•威海)某学校为了解学生体能情况,规定参加测试的每名学生从“立定跳远”,“耐久跑”,“掷实心球”,“引体向上”四个项目中随机抽取两项作为测试项目.(1)小明同学恰好抽到“立定跳远”,“耐久跑”两项的概率是多少?(2)据统计,初二三班共12名男生参加了“立定跳远”的测试,他们的成绩如下:9510090829065897475939285①这组数据的众数是_________,中位数是_________;②若将不低于90分的成绩评为优秀,请你估计初二年级180名男生中“立定跳远”成绩为优秀的学生约为多少人.21.(9分)(2014•威海)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?22.(9分)(2014•威海)已知反比例函数y=(m为常数)的图象在一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A、B的坐标分别为(0,3),(﹣2,0).①求出函数解析式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为_________;若以D、O、P为顶点的三角形是等腰三角形,则满足条件的点P的个数为_________个.23.(10分)(2014•威海)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:CD=HF.24.(11分)(2014•威海)猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为_________.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.25.(12分)(2014•威海)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.2014年山东省威海市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.(3分)(2014•威海)若a3=8,则a的绝对值是()A.2B.﹣2C.D.﹣考点:立方根;绝对值.菁优网版权所有专题:常规题型.分析:运用开立方的方法求解.解答:解:∵a3=8,∴a=2.故选:A.点评:本题主要考查开立方的知识,关键是确定符号.2.(3分)(2014•威海)下列运算正确的是()A.2x2÷x2=2xB.(﹣a2b)3=﹣a6b3C.3x2+2x2=5x2D.(x﹣3)3=x3﹣9考点:整式的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.菁优网版权所有专题:计算题.分析:根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同,以及幂的乘方,合并同类项法则求解即可.解答:解:A、2x2÷x2=2,故A选项错误;B、(﹣a2b)3=﹣a6b3,故B选项错误;C、3x2+2x2=5x2,故C选项正确;D、(x﹣3)3=x3﹣27﹣9x2+27x,故D选项错误.故选:C.点评:本题考查了单项式除单项式,以及幂的乘方,合并同类项法则,正确记忆法则是关键.3.(3分)(2014•威海)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+1考点:因式分解-提公因式法;因式分解-运用公式法.菁优网版权所有专题:因式分解.分析:分别将各选项利用公式法和提取公因式法分解因式进而得出答案.解答:解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键.4.(3分)(2014•威海)已知x2﹣2=y,则x(x﹣3y)+y(3x﹣1)﹣2的值是()A.﹣2B.0C.2D.4考点:整式的混合运算—化简求值.菁优网版权所有专题:计算题.分析:原式去括号合并后,将已知等式变形后代入计算即可求出值.解答:解:∵x2﹣2=y,即x2﹣y=2,∴原式=x2﹣3xy+3xy﹣y﹣2=x2﹣y﹣2=2﹣2=0.故选:B.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.5.(3分)(2014•威海)在某中学举行的演讲比赛中,初一年级5名参赛选手的成绩如下表所示,请你根据表中提供的数据,计算出这5名选手成绩的方差()选手1号2号3号4号5号平均成绩得分9095█898891A.2B.6.8C.34D.93考点:方差.菁优网版权所有分析:首先根据五名选手的平均成绩求得3号选手的成绩,然后利用方差公式直接计算即可.解答:解:观察表格知道5名选手的平均成绩为91分,∴3号选手的成绩为91×5﹣90﹣95﹣89﹣88=93(分),所以方差为:[(90﹣91)2+(95﹣91)2+(93﹣91)2+(89﹣91)2+(88﹣91)2]=6.8,故选:B.点评:本题考查了方差的计算,牢记方差公式是解答本题的关键.6.(3分)(2014•威海)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是()A.B.C.D.考点:简单组合体的三视图.菁优网版权所有专题:几何图形问题.分析:主视图、左视图、俯视图是分别从正面、左面、上面所看到的图形.解答:解:A、此几何体的主视图和俯视图都是“”字形,故A选项不合题意;B、此几何体的主视图和左视图都是,故B选项不合题意;C、此几何体的主视图和左视图都是,故C选项不合题意;D、此几何体的主视图是,俯视图是,左视图是,故D选项符合题意,故选:D.点评:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.7.(3分)(2014•威海)已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.菁优网版权所有专题:数形结合.分析:根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.解答:解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.点评:本题考查了在数轴上不等式的解集,先求出不等式的解集,再把不等式的解集表示在数轴上.8.(3分)(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.考点:锐角三角函数的定义;三角形的面积;勾股定理.菁优网版权所有专题:网格型.分析:作AC⊥OB于点C,利用勾股定理求得AC和AB的长,根据正弦的定义即可求解.解答:解:作AC⊥OB于点C.则AC=,AO===2,则sin∠AOB===.故选:D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9.(3分)(2014•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠A