专题讨论一元函数求极限极限是高等数学的基础,它贯穿了高等数学的始终。一元函数求极限是重中之重,且其求法也比较多。现将一元函数求极限的问题讨论如下。一、求一元函数极限的方法常见的求一元函数极限的方法有:1.利用极限的四则运算法则;2.利用等价无穷小代换;3.利用无穷小的性质;4.利用两个重要极限:0sinlim1xxx→=,1lim(1)xxex→∞+=;5.利用夹逼原理;6.利用单调有界准则;7.利用连续函数的性质;8.利用洛必达法则求未定式的极限(一元函数微分学的知识);9.利用函数的麦克劳林公式(函数的幂级数展开式)(一元函数微分学的知识或者是级数的知识);10.利用定积分的定义(定积分的知识);11.利用级数收敛的必要条件与常数项级数的和(级数的知识)。二、一元函数极限的类型1.求“00”型极限(1)若分子分母可以分解因式(或分子(分母)有理化后可以分解因式),则先分解因式,约去公因式后再求极限。例1.求极限23414lim1xxxxxx→+++−−。解:234234114(1)(1)(1)(1)limlim11xxxxxxxxxxxx→→+++−−+−+−+−=−−221(1)[1(1)(1)(1)(1)]lim1xxxxxxxx→−++++++++=−221lim[1(1)(1)(1)(1)]1xxxxxx→=++++++++=0例2.求极限23(3)(4)lim431xxxxxx→−++−−+。解:222233(3)(4)(3)(4)(431limlim(43)(1)431xxxxxxxxxxxxxxx→→−+−++−+−=+−−−+−−+)22233(3)(4)(431)(3)(4)(431)limlim253(21)(3)xxxxxxxxxxxxxxxx→→−++−+−−++−+−==−++−+−23(4)(431)7(22)lim4(21)7xxxxxx→++−+−+==−+−=−。(2)若分子分母不能分解因式,则考虑用等价无穷小代换、洛必达法则、麦克劳林公式。○1常见的等价无穷小有:当()0xα→时,有()()sin()tan()arcsin()arctan()1ln(1())xxxxxxeααααααα−+∼∼∼∼∼∼xαα−∼a≠,()1()lnxaxa(10),[1()]()loglnxaxaαα+∼(10a≠),211cos()()2xxαα−∼,31tan()sin()()2xxxααα−∼,11()1(kkn)xxnαα+−∼(2nZ+≤∈,)。kR+∈○2常用的六个函数的麦克劳林公式:231...()2!3!!nxnxxxexon=++++++x,3572112sin...(1)()3!5!7!(21)!nnnxxxxxxon−−=−+−++−+−x,246221cos1...(1)()2!4!6!(2)!nnnxxxxxon+=−+−++−+x,23411ln(1)...(1)()234nnnxxxxxxoxn−++=−+−++−+,23(1)(1)(2)(1)(2)...(1)(1)1...()2!3!!nnnxxxxxonααααααααααα−−−−−−++=++++++x例3.求极限2013sincoslim(1cos)ln(1)xxxxxx→+++。解:2200113sincos3sincoslimlim(1cos)ln(1)(1cos)xxxxxxxxxxxx→→+++++等价无穷小代换0013sin11limlim(cos)(30)1cos22xxxxxxx→→=+=+3+=。例4.求极限2011limcossinxxxex→−−−−x。解:22000112limlimlimcossincossinsincosxxxxxxxxxexxexxex→→→−−−−−−+−等价无穷洛必达小代换法则x011limcossin1102xxexx→==+−+−洛必达法则1。例5.求极限sin0lim1cos(1cos)xxxeexx+→−−−。解:sinsinsin00(1limlim(1cos)1cos(1cos)2xxxxxxxeeeexxxx++−→→)−−−−−等价无穷小代换sinsin23000(sin)sinlim4limlim22xxxxxexxxexxx++→→→−−=i等价无穷小代换x+2320001sin1cos224lim4lim4lim33xxxxxxxxx++→→→−−==洛必达等价无穷小法则代换23x+。例6.求极限2230cos()cos()limxxxxexex−→−。解:22223322123300()()1()[1cos()cos()2!2!limlimxxxxxxxexeoxoxxexexx−−→→−+−−+−麦克劳林公式()]244344443000()()1142limlimlim4221xxxxxxxxxxeeoxeeeexx−−−→→→−+−−−==洛必达法则4=−。2.求“∞∞”型极限(1)直接利用结论:201220120,...lim,...,nnnmxmmnmaaxaxaxanmbbxbxbxbnm→∞⎧⎪++++⎪==⎨++++⎪⎪∞⎩(其中,和为正整数,为实常数,且nm01212,,,...,,,,...,naaaabbbm0nmab≠)(2)对函数进行恒等变形后再求极限(3)将其转化为“00”型极限(4)利用洛必达法则例7.求极限22lim21xxxx→−∞++−。解:222211limlim2212111xxxxxxx→−∞→−∞==++−−+−−−例8.求极限cot(5)limcsc(3)xxxπ→。解:00cot(5)sin(3)sin(33)sin(3)limlimlimlimcsc(3)tan(5)tan(55)tan(5)xxttxxxtttxxxtttππππππ→→→→−=+−===++033lim55ttt→−=−等价无穷小代换例9.求极限0ln(sin)limln(sin)xmxnx+→(其中为正实数)。,mn解:000cosln(sin)cossinsinsinlimlimlimlimcosln(sin)cossinsinsinxxxxmxmmxmmxnxmnxmxnxnxnnxmxnmxnnx+++→→→==洛必达法则0+→0lim1xmnxnmx+→=等价无穷小代换3.求“1”型极限∞(1)利用重要极限1lim(1)nnen→∞+=,10lim(1)xxxe→+=,1lim(1)xxex→∞+=的结论;(2)利用两边取对数及复合函数的极限法则,将其转化为“00”或“∞∞”进行计算;(3)先利用恒等式(,有)及复合函数的极限法则,将其转化为“0a∀lnaae=00”或“∞∞”进行计算;例10.求极限10lim(2sincos)xxxx→+.解:0001ln(2sincos)2sincos12sin1coslimlimlimlim0lim(2sincos)xxxxxxxxxxxxxxxxeee→→→++−−→+==等价无穷小代换0xx→−20022limlim202xxxxxxee→→−−e==等价无穷小代换例11.求极限11cos0arcsinlim()xxxx−→。解:20300arcsin1arcsinlimln()arcsin12limlim1cos1cos20arcsinlim()xxxxxxxxxxxxxxeeex→→→−−−−→==等价无穷小代换x2222222002200111()111111122limlim2lim2lim2lim3133xxxxxxxxxxxxeeee→→→→−−−−−−−−−==洛必达等价无穷法则小代换033xxe→=。例12.求极限2limtan()4nnnπ→∞⎡⎤+⎢⎥⎣⎦。解:因为2tan()14lim221limlntan()lim[tan()1]442limtan()4xxxxxxxxxxxeeexππππ→+∞→+∞→+∞+−++−→+∞⎡⎤+==⎢⎥⎣⎦等价无穷小代换2222222sec()4lim122limsec()2sec444xxxxxxeeeπππ→+∞→+∞−+−+==洛必达法则e=所以42limtan()4nnenπ→∞⎡⎤+=⎢⎥⎣⎦。3.求“”、“”、“∞−∞0∞i0()∞−∞i”、、“”、“”型极限(将其转化为“000∞00”或“∞∞”进行计算)例13.求极限011lim()1xxxe→−−(“∞−∞”)。解:20001111lim()limlimlim1(1)2xxxxxxxxexexe01xxexex→→→→−−−−−−=−−等价无穷洛必达小代换法则x01lim22xxx→=等价无穷小代换。例14.求极限011limcot()sinxxxx→−(“()∞∞−∞i”)。解:300111sinsinlimcot()lim[cos]limsinsinsinxxxxxxxxxxxxxxx→→→−−−=ii等价无穷小代换02220011cos12limlim33xxxxxx→→−6=洛必达等价无穷法则小代换例15.求极限1ln0lim(1)xxxex→−−(“”)。00解:2000011lim(1)1ln(1)1limlimlimlnln110lim(1)xxxxxxxxxxeexxexexxxxxexexexeeee→→→→−−−−−−x−−−→−−==洛必达等价无穷法则小代换−0022limlim21xxxxxexee→→−=洛必达等价无穷法则小代换e。例16.求极限1lim()xxxxe→+∞+(“0∞”)。解:11ln()1limlimlimlim11lim()xxxxxxxxxxxeeexexexxxxxxeeeee→+∞→+∞→+∞→+∞++++++→+∞+==洛必达洛必达法则法则ee1lim1xxeee−→+∞+==。5.求无穷多项和的极限(1)若该和能求出,则先求和再求极限;(2)若该和不能求出,则考虑用夹逼准则、定积分的定义、常数项级数求和(先求其对于的幂级数的和函数,再求和函数在相应点处的函数值)进行计算。例17.求极限22212lim(...)nnnnn→∞+++(能求出和)。解:222221(1)1212...12lim(...)limlim2nnnnnnnnnnnn→∞→∞→∞+++++++===。例18.求极限2266612lim...2nnnnnnnn→∞⎛⎞+++⎜⎟+++⎝⎠2(不能求出和,用夹逼准则)解:记2266612...2nnTnnnnnn=++++++2,则222222626123...123...nnnTnnnn++++++++≤≤++,而2226262411(1)(21)(1)(2)123...116limlimlim6311nnnnnnnnnnnnnn→∞→∞→∞++++++++==+++1=,22266511(1)(21)(1)(2)123...116limlimlim6311nnnnnnnnnnnnnn→∞→∞→∞++++++++1===+++,由数列极限的夹逼准则,得1lim3nnT→∞=,即22666212lim...32nnnnnnnn→∞⎛⎞1+++=⎜⎟+++⎝⎠例19.求极限111lim...12nnnnn→∞⎛⎞+++⎜+++⎝⎠⎟(不能求出和,也不能用夹逼准则,应该用定积分的定义)解:因为1111111lim...lim...1212111nnnnnnnnnnn→∞→∞⎛⎞⎜⎟⎛⎞+++=+++⎜⎟⎜⎟+++⎝⎠⎜⎟+++⎝⎠,而函数11x+在其定义域内连续,所以函数11x+在定义域的任何闭区间上的定积分都存在,则由定积分的定义,得[]110011111lim...ln(1)ln2121111ndxxnnxnnn→∞⎛⎞⎜⎟+++==+=⎜⎟+⎜⎟+++⎝⎠∫故111lim...ln212nnnnn→∞⎛⎞+++=⎜⎟+++⎝⎠。例20.求极限2212ln(1)ln(1)ln(1)lim...1112nnnnnnnn→∞⎡⎤+++⎢⎥+++⎢⎥+⎢