锐角的三角比-知识讲解

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

锐角的三角比知识讲解【学习目标】1.结合图形理解记忆锐角三角函数的定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值;3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinAaAc的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosAbAc的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanAaAAb的对边的邻边;锐角A的邻边与对边的比叫做∠A的余切,记作cotA,即cotAbAAa的邻边的对边.同理sinBbBc的对边斜边;cosBaBc的邻边斜边;tanBbBBa的对边的邻边;cotBaBBb的邻边的对边要点诠释:(1)正弦、余弦、正切、余切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA,cotA分别是一个完整的数学符号,是一个整体,不能写成,,,cotA不能理解成sin与∠A,cos与∠A,tan与∠A,cot与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、、2cotA()常写成、、、2cotA.ABCabc(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA>0cotA>0.要点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角cot30°45°1160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦、余切值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;tanA=cot(90°-∠A)=cotB,tanB=cot(90°-∠B)=cotA.(2)平方关系:;(3)倒数关系:或;(4)商的关系:sincostan,cotcossinAAAAAA要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.如图所示,在Rt△ABC中,∠C=90°,AB=13,BC=5,求∠A,∠B的正弦、余弦、正切、余切值.【答案与解析】在Rt△ABC中,∠C=90°.∵AB=13,BC=5.∴222213512ACABBC.∴5sin13BCAAB,12cos13ACAAB,5tan12BCAAC,12cot5ACABC;12sin13ACBAB,5cos13BCBAB,12tan5ACBBC,5cot12BCBAC.【总结升华】先运用勾股定理求出另一条直角边,再运用锐角三角函数的定义求值.举一反三:【变式】在Rt△ABC中,∠C=90°,若a=3,b=4,则c=,sinA=,cosA=,sinB=,cosB=.【答案】c=5,sinA=35,cosA=45,sinB=45,cosB=35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)sin30°-2cos60°+cot45°;(2)tan30sin30cot45tan60°°°°;(3)101(13)|1sin30|2°.【答案与解析】ABCabc(1)原式11121222;(2)原式31132613;(3)原式11511212222.【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【变式】在Rt△ABC中,∠C=90°,若∠A=45°,则∠B=,sinA=,cosA=,sinB=,cosB=.【答案】∠B=45°,sinA=22,cosA=22,sinB=22,cosB=22.类型三、锐角三角函数之间的关系3.(1)求锐角;(2)已知求锐角.【答案与解析】(1)先将已知方程变形后再求解.∴锐角=30°.(2)先将已知方程因式分解变形.∴锐角=45°.【总结升华】要求等式中的锐角,只需求得这个角的三角函数值,运用换元的方法,把角的三角函数看作未知数,解方程求得它的解(值),然后再求这个锐角.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD与BC相交于点P,若弦CD=6,试求cos∠APC的值.【答案与解析】连结AC,∵AB是⊙O的直径,∴∠ACP=90°,又∵∠B=∠D,∠PAB=∠PCD,∴△PCD∽△PAB,∴PCCDPAAB.又∵CD=6,AB=10,∴在Rt△PAC中,63cos105PCCDAPCPAAB.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC,由AB是⊙O的直径得∠ACB=90°,cosPCAPCPA,PC、PA均为未知,而已知CD=6,AB=10,可考虑利用△PCD∽△PAB得PCCDPAAB.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadABCAB底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A<180°,∠A的正对值sadA的取值范围是_______.(3)如图1②,已知sinA=35,其中∠A为锐角,试求sadA的值.【答案与解析】(1)1;(2)0<sadA<2;(3)如图2所示,延长AC到D,使AD=AB,连接BD.设AD=AB=5a,由3sin5BCAAB得BC=3a,∴22(5)(3)4ACaaa,∴CD=5a-4a=a,22(3)10BDaaa,∴10sadA5BDAD.【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA=1;(2)在图①中设想AB=AC的长固定,并固定AB让AC绕点A旋转,当∠A接近0°时,BC接近0,则sadA接近0但永远不会等于0,故sadA>0,当∠A接近180°时,BC接近2AB,则sadA接近2但小于2,故sadA<2;(3)将∠A放到等腰三角形中,如图2所示,根据定义可求解.

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功