1如何客观、合理的评价学生学习状况摘要现行的以考试成绩衡量学生学习状况的方法比较主观,且评价方式单一,忽略了不同基础水平的同学的进步程度,为了激励优秀学生努力学习取得更好的成绩,同时鼓励基础相对薄弱的学生树立信心,不断进步,我们需要建立一个客观,合理的评价学生状况的数学模型。考虑到以上情况,本文通过以下几步来达到目的。步骤一:通过分析题目所给198名学生的整体成绩情况,包括大一两个学期每个学期的整体平均成绩、及格率、方差、标准差等多项指标有关,通过所给数据,得到图表。分析数据充分理解学生的学习情况,更有利于以下两个模型的进行,为模型的建立提供参考。步骤二:对于全面、客观、合理的评价学生的学习状况,我们采用了二个模型:模型一:利用黑尔指数法求得的进步分数和层次分析法进行评价:设定适当的权系数,使最终成绩更为合理。本专业为工科类专业,应更加重视专业学习能力,因此专业课程所占权系数较高,成绩也能更好的选拔专业能力强的学生。同时为了激励进步学生,进步分也占有部分权限,能够起到很好的鼓励作用。为此我们设置:最终成绩Y=0.55*专业课程+0.4*其他课程+0.05*进步分数。模型二:采用成绩标准化模型对成绩进行评价:采用对数变换将负偏态的成绩分布正态化,并用Matlab进行了正态检验。从而学生成绩的差距分布更为合理,成绩偏低的学生变换后将处于中等位置,得到适当的鼓励,改变了负偏态分布中较多学生成绩集中在高分段或低分段的现象。然后,将正态分布归一化为标准正态分布,消除每个学期评价考核体系的不稳定性因素,得到每个学生各学期的“有2效成绩”。并基于有效成绩提出了等级评定子模型,确定了等级分数线,更清楚的表明了每个学生在整体位置。关键词:黑尔指数层次分析成绩标准化有效成绩一.问题重述现行的评价方法相对比较局限、主观、有失公允,只能对学习基础好的学生产生激励作用,而不能对所有学生尤其是后进学生起到激励作用,这种评价弊端开始被越来越多的人关注。评价学生学习状况的目的是激励优秀学生努力学习取得更好的成绩,同时鼓励基础相对薄弱的学生树立信心,不断进步。然而,现行的评价方式单纯的根据“绝对分数”评价学生的学习状况,忽略了基础条件的差异;只对基础条件较好的学生起到促进作用,对基础条件相对薄弱的学生很难起到鼓励作用。请通过科学合理的分析评价方法,设计合适的数学模型,对学生学习状况做出全面、客观、合理的整体评价。二.问题分析根据统计学知识,这198名学生的整体情况应包括两个学期整体的平均成绩、极差、中位数、方差、标准差、偏度等多项指标。通过整理所给数据,可以得到两个学期所需的相关指标,并进行正态性检验。可以由此对学生的整体情况进行全面、直观的说明。评价一个学生的学习情况可以有很多方面的因素,如智力因素、学习环境、学习基础等。但我们只有学生两学期的考试成绩,如果考虑很多因素就不合现实,具有不可操作性,因此,只着眼于考试成绩和进步状况两类因素。模型一:为了科学的评价学生的学习情况,必须按照学校专业的特点,制定合理的学习情况评价体系。由美国学者T.L.Satty提出的层次分析法把人的思维层次化、数量化,并用数学方法为分析评价或决策提供定量依据。我们借用该方法建立评3价生成绩的层次结构如下。为了鼓励基础薄弱但是进步很大的学生,我们设置了进步分项目,在最终成绩的评定中占有一定比例。我院为工科类院,注重专业素养的培养,因此专业课程成绩十分关键。第一层第二层在第二层以下为第三层,是具体的课程或科目。设定适当的权系数,使最终成绩更为合理。模型二:为了使得学生之间成绩的差距分布更为合理,原来成绩偏低的学生经过变换后处于中等位置,从而使他们会得到适当的鼓励,树立信心,不断进步,并改变负偏态分布中有较多同学集中在高分段或低分段的情况,激励成绩较低的学生努力学习取得更好的成绩,有必要将负偏态分布的学生成绩通过数学手段变换为正态分布,而且变换成正态分布后,还会对数据处理带来极大的方便。由于每个学期的评价体系存在一定的波动,例如考核中不可避免的难易程度的变化等因素会使各学期之间的同一学生成绩缺少一定的比较性。为了消除学期之间的差异,为此将正态分布再经过变换为标准正态分布,使得同一学生在不同学期的成绩具有更可靠的可比性。由此我们最终得到了标准化的成绩,称之为“有效成绩”,并运用该成绩对学生的学生状况进行评价。三.模型假设1.假设总成绩总分都是100分;2.假设两个学期的学生人数未发生改变;其他课程进步得分学习状况的评价专业课程43.假设每位同学的学习考试环境相同;4.假设每位同学的学习能力基本保持不变;5.假设数据中的零是特殊情况导致的;6.假设影响学生成绩的因素主要有真实成绩与进步程度。四.符号说明与名称解释4.1符号说明i第i个学生,i=1,2…199j第j个指标,j=1,2,…7nx学生第n学期的成绩n=1,2nx学生每学期的进步程度Zi学生i的综合评定指数C1为实际学习成绩C2为学习成绩进步度ijS表示第i个学生第j学期的成绩jiT表示第i个学生第j学期的进步度4.2名称解释1.黑尔指数转换:用指数方差确定进步幅度和难度,并根据高低分的进步幅度,以不同的难度权重,最后根据粗测验获得的“进步分”的多少来进行评价。2.层次分析:由美国学者T.L.Satty提出的层次分析法把人的思维层次化、数量化,并用数学方法为分析评价或决策提供定量依据。3.成绩标准化模型:采用对数变换将负偏态的成绩分布正态化的模型。五.模型的建立与求解5.1对成绩进行分析利用所给13级大一成绩进行统一,得到了学生成绩总体分布的情况如图所5示。数据处理时把成绩分为四个等级。80分及以上为优秀,70分到80分之间为良好,60分到70分之间为合格,小于60分为不及格。从结果可看出,成绩优秀和良好的同学居多。但是第二学期优秀人数下降,良好人数上升。不及格人数也上升。说明专业课程难度增加,学生需要更努力才能更上专业课难度的上升。利用Excel对统计的数据进行进一步分析,得到模型需要的相关数据。如下:Excel对统计后数据进一步分析计算得到的表格如下:6由上表可以得出:一、二、学期的偏度为负,说明呈负偏态分布,即分数小于平均分的学生比大于平均分的学生多。同时我们还可以得到以下结论:(1)、两个学期的及格率均在97%以上,可以肯定大部分学生的学习能力;(2)、第二学期的标准差较第一学期的大,说明第二个学期的分数较为分散,学生的差距较大;(3)、两个学期中,分数大于90分的学生比较少,所以该学校应该加强尖子生这块的培养;(4)、两个学期的总平均成绩在75分左右,学生的总体学习情况良好。5.2.评价学生的学习情况5.2.1所给成绩数据处理进步得分的计算:黑尔指数转换:用指数方差确定进步幅度和难度,并根据高低分的进步幅度,以不同的难度权重,最后根据粗测验获得的“进步分”的多少来进行评价。(1)根据原始的黑尔指数表格回归分析出T分与进步分公式,根据黑尔指数换算表回归分析出T分与相应的进步分y的关系:y=0.09966*1.0473T,得到进步分yij。7先是利用公式,其中xij是第i个学生第j学期的成绩,xj,xj分别每个学期的学生的总体的平均分与标准差。利用这个公式将成绩转换为T分。将两学期两次额成绩分别转换成T分,然后将T分转换为进步分,见附录。MATLAB计算程序见附录以下表是学号前二十位学生为例所求的T分和进步分层次分析法:我们借用该方法建立评价生成绩。为了鼓励基础薄弱但是进步很大的学生,我们设置了进步分项目,在最终成绩的评定中占有一定比例。我院为工科类院,注重专业素养的培养,因此专业课程成绩十分关键。在层次分析法中,同一层中的各项成绩对上一层的贡献程度不是均等的,带有不同的权重,总成绩按加权平均计算。以下为大一两学期科目所对应字母设置:第一学期8高等数学ⅠA计算机工程制图大学计算机基础Ⅰ电路分析abcd思想道德修养与法律基础体育电子测量技能训练军训和军事理论Ⅰ大学外语ⅠAefghi第二学期体育马克思主义基本原理概论大学生职业发展与就业指导Ⅰ大学外语ⅠB中国近现代史纲要概率论与数理统计模拟电路大学物理ⅡC语言程序设计EFGHIABCD最终成绩Y=0.55*专业课程+0.4*其他课程+0.05*进步分数以下权系数的设置根据本小组同学对本专业了解。专业课程和其他课程的分配也是本小组观点,不代表学院分配。由于能力有限抑或是对本专业了解还不够深入,权限系数的设置有待优化。专业课=一二学期平均第一学期专业课成绩=0.3*a+0.2*b+0.2*c+o.3*d第二学期专业课成绩=0.2*a+0.3*b+0.2*c+o.3*d其他课程=一二学期平均第一学期其他课程成绩=0.2*e+0.25*f+0.2*g+o.1*h+0.25*i第二学期其他课程成绩=0.25*E+0.2*F+0.1*G+o.25*H+0.2*I以下表是学号前二十位学生为例所求的最终成绩所有数据见附录95.2.2成绩标准化模型原始成绩的标准化下面讲述如何将原始成绩变换为标准化的成绩。第一步:原始成绩的正态化及其检验假设0ix(i=1,2,……612)为612个学生的某一学期的原始成绩,由将偏态分布变换为正态分布的对数变换法,令:0ln(100)iiyx此时这些学生的变换成绩yi满足正态分布。由于该函数是单调递减函数,原始成绩高的反而变换成绩低,为了与传统习惯保持一致,再经过下述变换2iixyy,此时的ix为正态化之后的成绩。从频次直方图可以看出ix基本符合正态分布。为了进一步验证成绩分布是否为正态分布,我们用matlab进行了正态性检验,检验程序见附录。检验结果如图所示,从图中可以看出实际观测值与期望值在中央横线的一段,坐标点落在中央横线附近,在中央横线的两端则有一定的偏离,但绝大部分偏离值10均小于0.05,仅有个别点偏离较大。可见,学期1,2的成绩呈现正态分布。1112第二步:将正态分布标准化因为ix已是正态分布,因而可由正态分布转化为标准正态分布的相关公式,将ix转化到服从标准正态分布,得:有效成绩2iixxxi=1,2,……612均值为111111(2)nnniiiiiixxyyynnn,方差为σ2=21111()()11nniiiixxyynn。这就是我们所定义的有效成绩。下表是我们应用EXCEL,由两学期原始成绩计算的有效成绩ix(由于篇幅有限成绩列表均只列出部分成绩,所有成绩见附录)。图为有效成绩ix的频次分布直方图,可以看出它已很好的符合正态分布。标准正态化程序见附录。由于篇幅有限,以下为学号前二十位同学的有效成绩:第一学期第二学期学号正态分布成绩有效成绩正态分布成绩有效成绩222013333210001153.6149-12.39978461142.1672-9.310990074222013333210002154.1093-0.971879522142.69040.64728808222013333210003154.0695-1.891844374142.4548-3.836982434222013333210004153.95-4.654050399142.4926-3.117519678222013333210005154.1508-0.012619689142.67490.352270283222013333210006154.1352-0.373208928142.71811.174513433222013333210007154.21071.371950527142.6188-0.715503808222013333210009154.1720.47741184142.93235.251469054222013333210010154.42286.274577287143.211710.56940276222013333210011154.32974.122599204142.86964.058074482222013333210012154.1508-