第一章特殊的平行四边形课题§1.1菱形的性质与判定总课时1备课教师授课教师教学目标1.能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.2.运用菱形知识解决具体问题,培养逻辑推理能力和演绎能力.3.经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法.教学重点菱形的性质及其应用.教学难点菱形性质的探究教学过程菱形的面积公式:1.根据菱形是平行四边形求菱形的面积2.求证:菱形的面积等于其对角线长的乘积的一半已知:求证:例1.如图,菱形花坛ABCD的周长为80m,∠ABC=60度,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(分别精确到0.01m和0.01m)例2.如图,菱形ABCD的对角线交于点O,AC=16cm,BD=12cm.(1)求菱形ABCD的边长;(2)求菱形ABCD的高DM.1.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4B.2.4C.4.8D.52.如图,在菱形ABCD中,∠B=60°,AB=2,E、F分别是BC和CD的中点,连接AE、EF、AF,则△AEF的周长为()A.23B.33C.43D.3.3.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°例题精讲4.如图1-1-38,在给定的一张平行四边形纸片ABCD上作一个菱形,甲、乙两人的作法如下:图1-1-38甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于点M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于点E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误5.如图所示,在菱形ABCD中,AE垂直平分BC,垂足为E,AB=4cm.那么,菱形ABCD的面积是________,对角线BD的长是________.6.如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=60°,连接EF,则△AEF的面积最小值是.7如图,在四边形ABCD中,E为AB上一点,△ADE和△BCE都是等边三角形,AB、BC、CD、DA的中点分别为P、Q、M、N,试判断四边形PQMN为怎样的四边形,并证明你的结论.8.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.求证:(1)求∠BGD的度数。(2)求证:DG+BG=CG9.将两张宽度相等的长方形纸片叠放在一起得到如图29所示的四边形ABCD.(1)求证:四边形ABCD是菱形.(2)如果两张长方形纸片的长都是8,宽都是2,那么菱形ABCD的周长是否存在最大值或最小值?如果存在,请求出来;如果不存在,请简要说明理由.巩固总结课后反思