AnIntroductiontoTimoshenkoBeamFormulationanditsFEMimplementationChanYumJiCOME,TechnischeUniversitätMünchenContentofpresentationIntroductionFormulationofTimoshenkoBeamElementsFEMimplementation ExampleProblemwithFEMimplementation Reasonp-versionFEMimplementation ExampleQuestionsandAnswersReferencesBathe,K.-J.:FiniteElementProcedures(PrenticeHall,EnglewoodCliffs,1996)Bischoff,M.:LectureNotesoncourseAdvancedFiniteMethods,TUM0.1Introduction:ReviewofEuler-BernoulliBeamTheoryBeamiscondensedtoan1-DcontinuumAssumptionsMid-surfaceplaneremainsinmid-surfaceafterbendingCrosssectionsremainstraightandperpendiculartomid-surfaceOnevariable(displacement)ateachpointApplicabletothinbeams0.2Howaboutthickbeams?ShearingforceexistsinsidebeamAssumption“Crosssectionsremainperpendiculartocentroidalplane”nolongervalidsTimoshenkotheory0.3TimoshenkobeamtheoryBeamiscondensedtoan1-DcontinuumAssumptionMid-surfaceplaneremainsinmid-surfaceafterbendingCrosssectionsremainstraightandperpendiculartomid-surfaceTwoindependentvariables(displacementandrotation)ateachpointDistributivemomentstakenintoaccount1.1GoverningequationsKinematicequationsEquilibriumConstitutiveequations(MaterialLaws)DisplacementsStrainsStressesForcesKinematicequationsMaterialLawsEquilibrium1.2KinematicequationsRemembertheequationsforEuler-Bernoullibeams……dxdw=β22dxwddxd−=−=βκ1.2Kinematicequations…andherecomestheequationsforTimoshenkobeams! Westillassumecrosssectionremainsstraightatthemomentγβ−=dxdwdxdβκ−=1.3EquilibriumConsiderapartofthebeamQMQdxdMmQdxdQq+−=+−=−=−=''1.4Constitutiveequations(MaterialLaws)BendingpartShearingpart αtakesintoaccountofnon-straightcrosssectionsκEIM=γαGAQ=1.5SummaryofallequationsKinematicrelationsEquilibriumMaterialLawsγβ−=dxdwdxdβκ−=γακGAQEIM==QMQdxdMmQdxdQq+−=+−=−=−=''1.6BoundaryconditionsDisplacement/Essential/DirichletForce/Neumann00)0()0(MMQQ==llMlMQlQ−=−=)()(00ˆ)0(ˆ)0(ββ==wwlllwlwββˆ)(ˆ)(==2.1FiniteElementMethod–WeakformulationFEMisanumericalmethodoffindingapproximatesolutions“Weak”formulation Thethreeequationsarenotsatisfiedateachpoint,butonlyingeneralsenseVirtualworkprinciple:0int=+extWWδδ2.2VirtualworkprincipleExternalvirtualworkInternalvirtualworkAs,()lllllextMMwQwQdxmwqWδβδβδδδβδδ+++++=∫00000()∫+=−ldxMQW0intδκδγδ0int=+extWWδδ()lllllMMwQwQdxMQmwqδβδβδδδκδγδβδ++++−−+=∫0000002.3Virtualworkprinciple–inMatrices=βwu∂∂−∂∂=xx01*L=EIGA00αC=MQσ=κγε∂∂∂∂=xx01L()0d000=⋅−⋅−⋅−⋅∫lTlTlTxδuPδuPδupδεσ=mqp2.4DiscretisationFEMcannotdealwithcontinuousfunctionsUnknowncoefficients(d)withpre-assignedshapefunctions(N) nodalvaluesasunknowns twonodesmakesupanelement twolinearshapefunctionsforanelementMatrixform:u=N·d2.4DiscretisationBecauseandandsupposedNuu⋅=≈h()0000=⋅−⋅−⋅−⋅∫lTlTlTdxδuPδuPδupδεσ()[]0d00=⋅−⋅−⋅∫bllxδuPPδupδuCLLuTTεCσ⋅=uLε⋅=()[]0d00=⋅−⋅⋅−⋅∫δdPPδdNpδdCBBdTTllx+⋅=⋅∫∫l0TPPNpdCBBxxlldd00StiffnessMatrixLoadVectorUnknown2.5ImplementationMapleexampleComparison:WithEuler-BernoulliBeamLP=t33.1ProblemwithFEMimplementationDisplacementmuchsmallerthanexpectedExtremelyslowconvergingrateAddingelementsdoesnothelpResultdependsononecriticalparameter Displacement=0whenparameterreachesinfinityLocking3.1LockingbehaviourexhibitsslowconvergingrateConvergingbehaviourofFEsolution00.20.40.60.811.2051015202530NumberofelementsRelativedisplacemenEulerBernoulli(Analytical)Timoshenko(FEapproximation)3.1LockingbehaviourdependsonslendernessChangeofestimateddisplacementagainstslenderness0.010.111002468101214161820SlendernessRelativedisplacementEulerBernoulli(Analytical)Timoshenko(FEapproximation)3.2ReasonsoflockingFirstReasonEquilibrium:Whentissmall,sheardominatesifw’andβdonotbalance()()+′+′′=+′+′′−=+′−=βαββαβwGbtEbtwGAEIQMm2123.2ReasonsoflockingSecondreasonKinematicequation:Here,wislinear(setbyN1andN2)Thenw’becomesconstantTheonlysolutionforβ=constantZeroshearifslendernessistowardsinfinityγβ−=dxdw4.1SolvingproblemTheprocess Formulation FEMImplementation DiscretisationMethodsonimplementationMethodsondiscretisation4.2HighOrderfunctionsChangethediscretisationscheme Allowhigherordertermsinshapefunctions βneedsnottobeconstantHierarchicshapefunctions Nodalmodes Bubblemodes Advantages4.3ExampleMaplesheet4.4Graphshowingconvergenceofp-methodShapesofdeflectionwithdifferentordersconsidered00.511.522.53012345LengthDeflection1storder2ndorder3rdorderExact5ConclusionTimoshenkobeamtheoryisapplicableforboththickandthinbeamsItsuffersfromseverelockingbehaviourwhenlinearshapefunctionsareapplieddirectlyEmployinghighorderfunctionscansolvetheproblem6QuestionsandAnswersYourcommentsarealsowelcomed