冰蓄冷系统技术总结-secret

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一讲应用概念一、冰蓄冷空调“冰蓄冷空调”一词大家都一目了解,英文为‘ICESTORAGE’,日文为[冰蓄热],狭义的定义为[制冰蓄冷]的冷气系统。早期称谓[COOLSTORAGE(蓄冷)],此包含了[制冷水蓄冷]的冷气系统。但在寒带国家降了[蓄冷]外,还要[蓄热],因此,广义的用语为[THERMAL(ENERGY)STORAGEAIRCONDITIONINGSYSTEM(缩写为TES)],可译为[蓄能式空调系统]。对于南方地区仅有夏季(冷气)电力过载的困扰,仅需[蓄冰空调]。二、关于蓄冷系统的计量在常规的空调系统设计时,冷负荷是按照计算出建筑物所需要的多少“冷吨”、“千瓦”、“大卡/时”来计量,但是蓄冰系统是用“冷吨·小时”、“千瓦·小时”、“大卡”来计量。图1-1代表100冷吨维持10小时冷却的一个理论上的冷负荷,也就是一个1000“冷吨·小时”的冷负荷。图上100个方格中的每一格是代表10“冷吨·小时”。事实上,建筑物的空调系统在全日的制冷周期中是不可能都以100%的容量运行的。空调负荷的高峰出现多数是在下午2:00--4:00之间,此时室外环境温度最高。图1-2代表了一幢典型大楼空调系统一个设计工作日中的负荷曲线。如图可知,100冷吨冷水机组的全部制冷能力在10个小时的“制冷周期”中只有2个小时,在其它8个小时中,冷水机组只在“部分负荷”里操作,如果你数一数小方格的话,你会得到总数为75个方格,每一格代表10“冷吨·小时”,所以此建筑物的实际冷负荷为750“冷吨·小时”,但是常规的空调系统必须选用100冷吨的冷水机组来应付100冷吨的“峰值冷负荷”。三、冷水机组的“参差率”定义的“参差率”为实际“冷负荷”与“冷水机组的总制冷潜力”之比,即:参差率(%)=(实际冷吨·小时数/总的冷吨·小时潜力)*100%=750/1000*100因此该冷水机组的“参差率”为75%,也就是冷水机组能提供1000“冷吨·小时”,而空调系统只要用750“冷吨·小时”。低的“参差率”,则系统的投资亦低。将建筑物总的“冷吨·小时”被“制冷机工作小时”数除而得到的商,即为大楼在整个“制冷周期”中平均负荷。如果可以将空调负荷转移到峰值以外的时间去,或者与平均负荷相平衡,则只需选用较小制冷能力的冷水机组即可达到100%的参差率,而导致较好的投资效率。四、全部蓄能与部分蓄能采用蓄冷系统时,有两种负荷管理策略可考虑。当电费价格在不同时间里有差别时,我们可以将全部负荷转移到廉价电费的时间里运行。可选用一台能蓄存足够能量的传统冷水机组,将整个负荷转移到高峰以外的时间去,这称之为“全部蓄能系统”。图1-3表示了同一建筑物空调负荷的曲线,是采用了将全部冷负荷转移到“峰值时间”以外的14个小时中,冷水机组在夜间在蓄冷装置中进行制冷蓄冰。然后在白天将蓄存在0oC冰中的能量作为所要求的750“冷吨·小时”的制冷量用。平均负荷已进一步减少到53.6冷吨(750冷吨·小时/14=53.6冷吨),这导致大大地减少耗电量费用。这种方式常常用于改建工程中利用原有的冷水机组,只需加设蓄冷设备和有关的辅助装置,但需注意原有冷水机组是否适用于冰蓄冷系统。这种方式也适用于特殊建筑物,需要瞬时大量释冷,如体育馆建筑物。在新建的建筑中,部分蓄能系统是最实用的,也是一种投资有效的负荷管理策略。在这种负荷均衡的方法中,冷水机组连续运行,它在夜间用来制冷蓄存,在白天利用蓄存的制冷量为建筑物提供制冷。将运行时数从14小时扩展到24小时,可以得到最低的平均负荷(750冷吨·小时/24=31.25冷吨),如图1-4所示。需电量费用大大地减少,而是冷水机组的制冷能力也可减少50-60%或者更多一些。五、蓄冰率蓄冰率一般英文简写为IPF(ICEPACKINGFACTOR),即蓄冰槽内制冰容积与蓄冰槽容积之比值。IPF=蓄冰槽内制冰容积M3/蓄冰槽容积M3*100%(日本冷冻协会)一般用它来决定蓄冰槽的大小。目前各种蓄冰设备,其IPF约在20-70%范围内。另一称之为制冰率,其英文简写也为IPF,即蓄冰槽中水的最大制冰量与全水量(槽中充水的容积)之比值。IPF=槽中水的最大制冰量kg/全水量kg*100%(日本电力空调研究会)通过它可了解结冰多少,有的蓄冰设备,此值可达90%以上。应注意,国外两个定义都用IPF表示。各种冰蓄冷设备的两种蓄冰率数据见表1-1。表1-1冰蓄冷设备的蓄冰率类型冷媒盘管式完全冻结式制水滑落式冰晶或冰泥冰球式蓄冰率IPF120-50%50-70%40-50%45%左右50-60%蓄冰率IPF230-60%70-90%--90%以上美国多以Void(Space)Ratio[无效(空间)比]来表示,故蓄冰率IPF=1-VoidRatio.六、融冰能力DISCHARGECAPACITY蓄冰槽中之冰,实际可溶解而用于空调的蓄冷量。七、融冰效率DISCHARGEEFFICIENCY实际可用于应付空调负荷之[融冰能量]除以[总蓄冰能量]之值。八、蓄冷效率STORAGE(THERMAL)EFFICIENCY指实际可用于应付空负荷之[融冰能量]除以[用以制冰蓄冷的能量]之值。此值与融冰效率不同,但有时蓄冷效率也定义为融冰效率。九、过冷现象SUPERCOOLING指超过流体的冻结点而仍不冻结的现象。例如:纯水的冻结点为0oC,但水温需先降至-7oC左右,才会形成[冰核]再冻结成冰,(一般水之过冷现象约为-5oC,此现象将增加制冰初期的耗能量。)如图1-5所示。如要设法提高成核温度,减少过冷度,就要添加成核剂,但使用不同的成核剂配方,效果也各不相同。有些单位在研究和试验。十、蓄冷介质比较表1-2项目水冰低温共融盐蓄冷方式显热蓄冷显热+潜热潜热相变温度-0oC4-12oC温度变化范围12oC-7oC12oC水-0oC冰8oC液体-8oC固体单位重量蓄冷容量(KJ/KG)20.938496单位体积蓄冷容量(MJ/M3)(KWH/M3)(RTH/M3)20.95.811.6535598.6128.0815342.512.10每1000RTH需蓄冷介质多少体积606M335.3M382.6M3注:1RTH=12670KJ=3.516KWH=3024Kcal。对于水蓄冷来说,如果加大蓄冷温度(如12oC-4oC水,Δt=8oC),就提高了蓄冷密度,则蓄冷水池的体积就可减少(这时第1000RTH需360M3)。对于冰蓄冷来说,占有空间的大小,与蓄冰设备的构造和蓄冰率(IPF)的大小有密切关系,考虑桶和热交换设备占有的空间,每1000RTH需占有空间体积比全部是冰占有35.3M3的体积要大得多。第二讲冰蓄冷设备一、分类美国制冷工业协会(ARI)1994年出版的《蓄冷设备热性能指南》将蓄冷设备广义地分为显热式蓄冷和潜热式蓄冷,见表2-1。表2-1分类类型蓄冷介质蓄冷流体取冷流体显热式水蓄冷水水水潜热式冰盘管(外融冰)冰或其他共晶盐制冷剂水或载冷剂载冷剂冰盘管(内融冰)冰或其他共晶盐载冷剂载冷剂制冷剂制冷剂封装式冰或其他共晶盐水水载冷剂载冷剂片冰滑落式冰制冷剂水冰晶式冰制冷剂载冷剂载冷剂*注:载冷剂一般为乙烯乙二醇水溶液。最常用的蓄冷介质是水、冰和其他相变材料,不同蓄冷介质具有不同的单位体积蓄冷能力和不同的蓄冷温度。二、冰盘管式(ICE-ON-COIL)冷媒盘管式(REFRIGERANTICE-ONCOIL)外融冰系统(EXTERNALMELTICE-ONCOILSTORAGESYSTEMS)该系统也称直接蒸发式蓄冷系统,其制冷系统的蒸发器直接放入蓄冷槽内,冰结在蒸发器盘管上。此种形式的冰蓄冷盘管以美国BAC公司为代表。盘管为钢制,连续卷焊而成,外表面为热镀锌。管外径为1.05(26.67mm),冰层最大厚度为1.4(35.56mm),因此盘和换热表面积为5.2ft2/RTH(0.137m2/KWH),冰表面积为19.0ft2/RTH(0.502m2/KWH),制冰率IPF约为40-60%。融冰过程中,冰由外向内融化,温度较高的冷冻水回水与冰直接接触,可以在较短的时间内制出大量的低温冷冻水,出水温度与要求的融冰时间长短有关(参见图2-1、2-2、2-3)。这种系统特别适合于短时间内要求冷量大、温度低的场所,如一些工业加工过程及低温送风空调系统使用。(1)10小时放热特性(图2-1)该蓄冷方式是由食品冷冻行业中应用多年的乳品冷却设备改制发展而成。由此在乳品行业中经常采用。最近天津雀巢咖啡生产厂,工艺要求所供应的冷冻水温在全过程中要求保证稳定在+1°C,采用BAC外融冰装置,冰盘管表面冰层厚度大约为2-3MM,冷冻机24小时连续运行。在使用冷媒盘管式蓄冷槽时,有几点需注意:(1)当结冰厚度在1-3.5之间,若冷冻系统设计不当,制冰时冷冻蒸发温度较低,压缩机所需功率大,耗电率大,并且制冷时间长,用电量多;(2)若贮存的冰设有完全用掉而制冷时间已到,需要开始制冰,则必需隔着一层冰来制冰,由于冰是一种优良热阻,这将使制冷设备耗电率与用电量增加;(3)蓄冰槽内应保持约50%以上的水不冻成冰,否则无法正常抽取冷水使用进行融冰,故最好使用厚度控制器或增加盘管中心距,以避免冰桥产出;(4)在开放式系统中,蓄冰槽的进出口处(即水系统进出口管路上)应加装止回阀和稳压阀等近期制设备,以免仃泵时系统中的水回流,使蓄冰槽中水外溢。三、完全冻结式(TOTALFREEZE-UP)卤水静态储冰(GLYCOLSTATICICE)内融冰式(INTERNALMELTICE-ON-COILSTORAGE)该系统是将冷水机组制出的低温乙二醇水溶液(二次冷媒)送入蓄冰槽(桶)中的塑料管或金属管内,使管外的水结成冰。蓄冰槽可以将90%以上的水冻结成冰,融冰时从空调负荷端流回的温度较高的乙二醇水溶液进入蓄冰槽,流过塑料或金属盘管内,将管外的冰融化,乙二醇水溶液的温度下降,再被抽回到空调负荷端使用。这种蓄冰槽是内融冰式,盘管外可以均匀冻结和融冰,无冻坏的危险。这种方式的制冰率最高,可达IPF=90%以上(指槽中水90%以上冻结成冰)。生产这种蓄冰设备的厂家较多。1、美国CALMAC蓄冰桶采用外径为16mm(也有13mm)的聚乙烯管绕成螺旋形盘管热交换器。盘管冰层厚度为12mm,盘管换热表面积12ft2/RTH(0.317m2/KWH)。蓄冰筒数量的选择设计步骤如下:1、确定系统的“冷吨小时数”THTH=设计负荷*OH*DF2、确定冷水机组的“名义制冷量”CPCP=TH/[(CI*IH)+(CO*OH)]3、确定冰筒的数量NN=[TH-(CO*OH)]/冰筒的冷吨小时式中:DF--参差系数、设计“日平均负荷”除以“峰值负荷”,一般为0.65-0.90;TH--设计日系统的冷吨小时数;OH--制冷小时数;CP--机组“名义制冷量”;CI--冷水机组在制冰温度时的制冷量与空调额下制冷量之比;IH--制冷小时数;CO--冷水机组在“制冷工况下”的制冷量与额定制冷量之比,一般在1左右;例题:设计负荷200冷吨、OH=10小时、IH=12小时、DF=0.75、CI=0.65、CO=1。图2-4图2-5采用1190蓄冰筒(190冷吨小时)。冰筒入水温度为15.6°C,出水温度为8.9°C(日间),融冰放冷10小时,每个蓄冰筒可放冷166冷吨小时。可查表2-3。1、系统的冷吨小时数TH=200*10*0.75=1500冷吨小时2、冷水机组“名义制冷量”CP=1500/[(0.65*12)+10]=84.3冷吨3、冰筒数量N=[1500-(84.3*10)]/166=4个注:若全部蓄冰,OH=0。表2-2蓄冰筒性能和尺寸型号总蓄冷能力冷吨时潜蓄冷能力冷吨时显蓄冷能力冷吨时最高工作温度°C工作压力Mpa试验压力Mpa尺寸mm重量KG楼板负荷KG/m2水/冰体积L乙二醇浓度25%容量L管束管径mm共通管管径mm连接管管径mmDH无小时充水时1082A978215380.61.0188020833873773136037313551650501098A1159817380.61.

1 / 48
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功