高中数学必修五全套教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

[探索研究]在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有sinaAc,sinbBc,又sin1cCc,则sinsinsinabccABCbc从而在直角三角形ABC中,sinsinsinabcABCCaB(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=sinsinaBbA,则sinsinabAB,C同理可得sinsincbCB,ba从而sinsinabABsincCAcB(图1.1-3)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sinsinabABsincC[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使sinakA,sinbkB,sinckC;(2)sinsinabABsincC等价于sinsinabAB,sinsincbCB,sinaAsincC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sinsinbAaB;②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sinsinaABb。一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。[例题分析]例1.在ABC中,已知032.0A,081.8B,42.9acm,解三角形。解:根据三角形内角和定理,0180()CAB000180(32.081.8)066.2;根据正弦定理,00sin42.9sin81.880.1()sinsin32.0aBbcmA;根据正弦定理,00sin42.9sin66.274.1().sinsin32.0aCccmA评述:对于解三角形中的复杂运算可使用计算器。例2.在ABC中,已知20acm,28bcm,040A,解三角形(角度精确到01,边长精确到1cm)。解:根据正弦定理,0sin28sin40sin0.8999.20bABa因为00<B<0180,所以064B,或0116.B⑴当064B时,00000180()180(4064)76CAB,00sin20sin7630().sinsin40aCccmA⑵当0116B时,00000180()180(40116)24CAB,00sin20sin2413().sinsin40aCccmA[补充练习]已知ABC中,sin:sin:sin1:2:3ABC,求::abc(答案:1:2:3)(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;②已知两边和其中一边对角,求另一边的对角。联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A、B均未知,所以较难求边c。由于涉及边长问题,从而可以考虑用向量来研究这个问题。A如图1.1-5,设CBa,CAb,ABc,那么cab,则bc22222cccababaabbabababCaB从而2222coscababC(图1.1-5)同理可证2222cosabcbcA2222cosbacacB于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即2222cosabcbcA2222cosbacacB2222coscababC思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:222cos2bcaAbc222cos2acbBac222cos2bacCba[理解定理]从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角。思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若ABC中,C=090,则cos0C,这时222cab由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。[例题分析]例1.在ABC中,已知23a,62c,060B,求b及A⑴解:∵2222cosbacacB=22(23)(62)223(62)cos045=212(62)43(31)=8∴22.b求A可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos222222(22)(62)(23)1,22222(62)bcaAbc∴060.A例2.在ABC中,已知134.6acm,87.8bcm,161.7ccm,解三角形解:由余弦定理的推论得:cos2222bcaAbc22287.8161.7134.6287.8161.70.5543,05620A;cos2222cabBca222134.6161.787.82134.6161.70.8398,03253B;0000180()180(56203253)CAB[补充练习]在ABC中,若222abcbc,求角A(答案:A=1200)Ⅳ.课时小结(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。[随堂练习1](1)在ABC中,已知80a,100b,045A,试判断此三角形的解的情况。(2)在ABC中,若1a,12c,040C,则符合题意的b的值有_____个。(3)在ABC中,axcm,2bcm,045B,如果利用正弦定理解三角形有两解,求x的取值范围。(答案:(1)有两解;(2)0;(3)222x)2.在ABC中,已知7a,5b,3c,判断ABC的类型。分析:由余弦定理可知222222222是直角ABC是直角三角形是钝角ABC是钝角三角形是锐角abcAabcAabcAABC是锐角三角形(注意:是锐角AABC是锐角三角形)解:222753,即222abc,∴ABC是钝角三角形。[随堂练习2](1)在ABC中,已知sin:sin:sin1:2:3ABC,判断ABC的类型。(2)已知ABC满足条件coscosaAbB,判断ABC的类型。(答案:(1)ABC是钝角三角形;(2)ABC是等腰或直角三角形)2.在ABC中,060A,1b,面积为32,求sinsinsinabcABC的值分析:可利用三角形面积定理111sinsinsin222SabCacBbcA以及正弦定理sinsinabABsincCsinsinsinabcABC解:由13sin22SbcA得2c,则2222cosabcbcA=3,即3a,从而sinsinsinabcABC2sinaAⅢ.课堂练习(1)在ABC中,若55a,16b,且此三角形的面积2203S,求角C(2)在ABC中,其三边分别为a、b、c,且三角形的面积2224abcS,求角C(答案:(1)060或0120;(2)045)Ⅳ.课时小结(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;(2)三角形各种类型的判定方法;(3)三角形面积定理的应用。Ⅴ.课后作业(1)在ABC中,已知4b,10c,030B,试判断此三角形的解的情况。(2)设x、x+1、x+2是钝角三角形的三边长,求实数x的取值范围。(3)在ABC中,060A,1a,2bc,判断ABC的形状。(4)三角形的两边分别为3cm,5cm,它们所夹的角的余弦为方程25760xx的根,求这个三角形的面积。例1、如图,一艘海轮从A出发,沿北偏东75的方向航行67.5nmile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0nmile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01nmile)解:在ABC中,ABC=180-75+32=137,根据余弦定理,AC=ABCBCABBCABcos222=137cos0.545.6720.545.6722≈113.15根据正弦定理,CABBCsin=ABCACsinsinCAB=ACABCBCsin=15.113137sin0.54≈0.3255,所以CAB=19.0,75-CAB=56.0答:此船应该沿北偏东56.1的方向航行,需要航行113.15nmile补充例2、某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?解:如图,设该巡逻艇沿AB方向经过x小时后在B处追上走私船,则CB=10x,AB=14x,AC=9,ACB=75+45=120(14x)2=92+(10x)2-2910xcos120化简得32x2-30x-27=0,即x=23,或x=-169(舍去)所以BC=10x=15,AB=14x=21,又因为sinBAC=ABBC120sin=211523=1435BAC=3831,或BAC=14174(钝角不合题意,舍去),3831+45=8331答:巡逻艇应该沿北偏东8331方向去追,经过1.4小时才追赶上该走私船.评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解Ⅳ.课时小结解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。例7、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2)(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm解:(1)应用S=21acsinB,得S=2114.823.5sin148.5≈90.9(cm2)(2)根据正弦定理,Bbsin=Ccsinc=BCbsinsinS=21bcsinA=21b2BACsinsinsinA=180-(B+C)=180-(62.7+65.8)=51.5S=213.1627.62sin5.51sin8.65sin≈4.0(cm2)(3)根据余弦定理的推论,得cosB=cabac2222=4.417.3823.274.417.38222≈0.7697sinB=B2cos1≈27697.01≈0.6384应用S=21acsinB,得S≈2141.438.70.6384≈511.4(cm2)例3、在ABC中,求证:(1);sinsinsin222222CBAcba(2)2a+2b+2c=2(bccosA+cacosB+abc

1 / 61
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功