2016年小升初数学专项训练讲义

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共44页2016年小升初数学专项训练第一讲小升初专项训练计算篇一、小升初考试热点及命题方向计算是小学数学的基础,近几年的试卷又以考察分数的计算和巧算为明显趋势(分值大体在6分~15分),学生应针对两方面强化练习:一分数小数混合计算;二分数的化简和简便运算;二、考试常用公式以下是总结的大家需要了解和掌握的常识,曾经在重要考试中用到过。1.基本公式:21321nnn2、612121222nnnn[讲解练习]:201932211921192112222原式nnnnan3、412121222333nnnn4、131171001abcabcabcabc6006610016131177877如:[讲解练习]:2007×20062006-2006×20072007=____.5、bababa22[讲解练习]:82-72+62-52+42-32+22-12____.6、742851.071428571.072……[讲解练习]:71化成小数后,小数点后面第2007位上的数字为____。7n化成小数后,小数点后若干位数字和为1992,问n=____。第2页共44页7、1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n28、1211111123211111111123456543211111129、111111111912345679[讲解练习]:5555555550501111111115091234567945012345679四、典型例题解析1分数,小数的混合计算【例1】(7185-61511)÷[21514+(4-21514)÷1.35]【例2】)19956.15.019954.01993(22.550276951922.5109395192庞大数字的四则运算【例3】19+199+1999+……+919999991个=_________。【例4】352551855612590921934833344807=_____第3页共44页3庞大算式的四则运算(拆分和裂项的技巧)【例5】42012020141213612211【例6】42133011209127657653【例7】211561510510646333124繁分数的化简【例8】已知1811111214x,那么x=_________.5换元法的运用【例9】19991312120001312112000131211999131211第4页共44页6其他常考题型【例10】小刚进行加法珠算练习,用1+2+3+……,当数到某个数时,和是1000。在验算时发现重复加了一个数,这个数是___。【拓展】小明把自己的书页码相加,从1开始加到最后一页,总共为1050,不过他发现他重复加了一页,请问是___页。作业题1、)5246.5(4023231532362、39×148149+148×86149+48×741493、9474583587392073789474583587391266212073789474583587399474583587391266214、有一串数、、、、、、、、4241333231222111它的前1996个数的和是多少?第5页共44页5、将右式写成分数21212121第二讲小升初专项训练几何篇(一)一、小升初考试热点及命题方向几何问题是小升初考试的重要内容,分值一般在12-14分(包含1道大题和2道左右的小题)。尤其重要的就是平面图形中的面积计算,几何从内容方面,可以简单的分为直线形面积(三角形四边形为主),圆的面积以及二者的综合。其中直线形面积近年来考的比较多,值得我们重点学习。从解题方法上来看,有割补法,代数法等,有的题目还会用到有关包含与排除的知识。二、典型例题解析1等积变换在三角形中的运用首先我们来讨论一下和三角形面积有关的问题,大家都知道,三角形的面积=1/2×底×高因此我们有【结论1】等底的三角形面积之比等于对应高的比【结论2】等高的三角形面积之比等于对应底的比【例1】如图,四边形ABCD中,AC和BD相交于O点,三角形ADO的面积=5,三角形DOC的面积=4,三角形AOB的面积=15,求三角形BOC的面积是多少?【例2】将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?第6页共44页燕尾定理在三角形中的运用下面我们再介绍一个非常有用的结论:【燕尾定理】:在三角形ABC中,AD,BE,CF相交于同一点O,那么S△ABO:S△ACO=BD:DC【例3】在△ABC中DCBD=2:1,ECAE=1:3,求OEOB=?2差不变原理的运用【例4】左下图所示的ABCD的边BC长10cm,直角三角形BCE的直角边EC长8cm,已知两块阴影部分的面积和比△EFG的面积大10cm2,求CF的长。【例5】如图,已知圆的直径为20,S1-S2=12,求BD的长度?第7页共44页3利用“中间桥梁”联系两块图形的面积关系【例6】如图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5厘米,求它的宽DE等于多少厘米?【例7】如下图所示,四边形ABCD与DEFG都是平行四边形,证明它们的面积相等。4其他常考题型【例8】用同样大小的22个小纸片摆成下图所示的图形,已知小纸片的长是18厘米,求图中阴影部分的面积和。第8页共44页拓展提高:下图中,五角星的五个顶角的度数和是多少?作业题1、如右图所示,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。2、如图,在三角形ABC中,,D为BC的中点,E为AB上的一点,且BE=13AB,已知四边形EDCA的面积是35,求三角形ABC的面积.3、右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少?4、图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE的面积是多少平方厘米.第9页共44页5、三角形ABC中,C是直角,已知AC=2,CD=2,CB=3,AM=BM,那么三角形AMN(阴影部分)的面积为多少?第三讲小升初专项训练几何篇(二)一、小升初考试热点及命题方向圆和立体几何近两年虽然不是考试热点,但在小升初考试中也会时常露面。因为立体图形考察学生的空间想象能力,可以反映学生的本身潜能;而另一方面,初中很多知识点都是建立在空间问题上,所以可以说学校考察立体也是为初中选拔知识链接性好的学生。二、典型例题解析1与圆和扇形有关的题型【例1】如下图,等腰直角三角形ABC的腰为10厘米;以A为圆心,EF为圆弧,组成扇形AEF;阴影部分甲与乙的面积相等。求扇形所在的圆面积。【例2】草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。问:这只羊能够活动的范围有多大?第10页共44页【例3】如图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积。(取π=3)与立体几何有关的题型小学阶段,我们除了学习平面图形外,还认识了一些简单的立体图形,如长方体、正方体(立方体)、直圆柱体,直圆锥体、球体等,并且知道了它们的体积、表面积的计算公式,归纳如下。见下图。2求不规则立体图形的表面积与体积【例4】用棱长是1厘米的正方块拼成如下图所示的立体图形,问该图形的表面积是多少平方厘米?第11页共44页【例5】如图是一个边长为2厘米的正方体。在正方体的上面的正中向下挖一个边长为1厘米的正方体小洞;接着在小洞的底面正中再向下挖一个边长为1/2厘米的小洞;第三个小洞的挖法与前两个相同,边长为1/4厘米。那么最后得到的立体图形的表面积是多少平方厘米?3水位问题【例6】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如下图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米.瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【例7】一个高为30厘米,底面为边长是10厘米的正方形的长方体水桶,其中装有21容积的水,现在向桶中投入边长为2厘米2厘米3厘米的长方体石块,问需要投入多少块这种石块才能使水面恰与桶高相齐?4计数问题【例8】右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?第12页共44页拓展提高:有甲、乙、丙3种大小的正方体,棱长比是1:2:3。如果用这三种正方体拼成尽量小的一个正方体,且每种都至少用一个,则最少需要这三种正方体共多少?作业题1、右上图中每个小圆的半径是1厘米,阴影部分的周长是_______厘米.(=3.14)2、求下图中阴影部分的面积:3、如右图,将直径AB为3的半圆绕A逆时针旋转60°,此时AB到达AC的位置,求阴影部分的面积(取π=3).4、有一个正方体,边长是5.如果它的左上方截去一个边长分别是5、3、2的长方体(如下图),求它的表面积减少的百分比是多少?第13页共44页5、如下图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,求所得形体的表面积是多少?第四讲小升初专项训练行程篇(一)一、小升初考试热点及命题方向行程问题是历年小升初的考试重点,各学校都把行程当压轴题处理,可见学校对行程的重视程度,由于行程题本身题干就很长,模型多样,变化众多,所以对学生来说处理起来很头疼,而这也是学校考察的重点,这可以充分体现学生对题目的分析能力。二、基本公式【基本公式】:路程=速度×时间【基本类型】相遇问题:速度和×相遇时间=相遇路程;追及问题:速度差×追及时间=路程差;流水问题:关键是抓住水速对追及和相遇的时间不产生影响;顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2(也就是顺水速度、逆水速度、船速、水速4个量中只要有2个就可求另外2个)其他问题:利用相应知识解决,比如和差分倍和盈亏;【复杂的行程】1、多次相遇问题;2、环形行程问题;3、运用比例、方程等解复杂的题;三、典型例题解析第14页共44页1典型的相遇问题【例1】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。【例2】小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?【例3】甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点。如果甲车速度不变,乙车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点12千米,如果乙车速度不变,甲车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点16千米。甲车原来每小时向多少千米?2典型的追及问题【例4】在400米的环行跑道上,A,B两点相距100米。甲、乙两人分别从A,B两点同时出发,按逆时针方向跑步。甲甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟。那么甲追上乙需要时间是多少秒?第15页共44页3多次折返的行程问题【例5】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度

1 / 44
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功