基本初等函数图像及性质大全

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1一、一次函数与二次函数(一)一次函数一次函数0kkxbkk,b符号0k0k0b0b0b0b0b0b图象性质y随x的增大而增大y随x的增大而减小(二)二次函数(1)二次函数解析式的三种形式①一般式:2()(0)fxaxbxca②顶点式:2()()(0)fxaxhka③两根式:12()()()(0)fxaxxxxa(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求()fx更方便.(3)二次函数图象的性质20fxaxbxca0a0a图像定义域,对称轴2bxa顶点坐标24,24bacbaa值域24,4acba24,4acbaOxyyxOOxyyxOOxyyxO2bxa2bxa2单调区间,2ba递减,2ba递增,2ba递增,2ba递减①.二次函数2()(0)fxaxbxca的图象是一条抛物线,对称轴方程为,2bxa顶点坐标是24(,)24bacbaa②当0a时,抛物线开口向上,函数在(,]2ba上递减,在[,)2ba上递增,当2bxa时,2min4()4acbfxa;当0a时,抛物线开口向下,函数在(,]2ba上递增,在[,)2ba上递减,当2bxa时,2max4()4acbfxa.二、幂函数(1)幂函数的定义一般地,函数yx叫做幂函数,其中x为自变量,是常数.(2)幂函数的图象过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).3三、指数函数(1)根式的概念:如果,,,1nxaaRxRn,且nN,那么x叫做a的n次方根.(2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mnmnaaamnN且1)n.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,mmmnnnaamnNaa且1)n.0的负分数指数幂没有意义.(3)运算性质①(0,,)rsrsaaaarsR②()(0,,)rsrsaaarsR③()(0,0,)rrrabababrR(4)指数函数函数名称指数函数定义函数(0xyaa且1)a叫做指数函数图象1a01a定义域R值域(0,)过定点图象过定点(0,1),即当0x时,1y.奇偶性非奇非偶单调性在R上是增函数在R上是减函数函数值的变化情况1(0)1(0)1(0)xxxaxaxax1(0)1(0)1(0)xxxaxaxaxa变化对图象的影响在第一象限内,a越大图象越高;在第二象限内,a越大图象越低.01xayxy(0,1)O1y01xayxy(0,1)O1y4四、对数函数(1)对数的定义①若(0,1)xaNaa且,则x叫做以a为底N的对数,记作logaxN,其中a叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log(0,1,0)xaxNaNaaN.(2)几个重要的对数恒等式log10a,log1aa,logbaab.(3)常用对数与自然对数常用对数:lgN,即10logN;自然对数:lnN,即logeN(其中2.71828e…).(4)对数的运算性质如果0,1,0,0aaMN,那么①加法:logloglog()aaaMNMN②减法:logloglogaaaMMNN③数乘:loglog()naanMMnR④logaNaN⑤loglog(0,)bnaanMMbnRb⑥换底公式:loglog(0,1)logbabNNbba且(5)对数函数函数名称对数函数定义函数log(0ayxa且1)a叫做对数函数图象1a01a定义域(0,)值域R过定点图象过定点(1,0),即当1x时,0y.奇偶性非奇非偶单调性在定义域上是增函数在定义域上是减函数01xyO(1,0)1xlogayx01xyO(1,0)1xlogayx5函数值的变化情况log0(1)log0(1)log0(01)aaaxxxxxxlog0(1)log0(1)log0(01)aaaxxxxxxa变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.五、反函数(1)反函数的概念设函数()yfx的定义域为A,值域为C,从式子()yfx中解出x,得式子()xy.如果对于y在C中的任何一个值,通过式子()xy,x在A中都有唯一确定的值和它对应,那么式子()xy表示x是y的函数,函数()xy叫做函数()yfx的反函数,记作1()xfy,习惯上改写成1()yfx.(2)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()yfx中反解出1()xfy;③将1()xfy改写成1()yfx,并注明反函数的定义域.(3)反函数的性质①原函数()yfx与反函数1()yfx的图象关于直线yx对称.②函数()yfx的定义域、值域分别是其反函数1()yfx的值域、定义域.③若(,)Pab在原函数()yfx的图象上,则'(,)Pba在反函数1()yfx的图象上.④一般地,函数()yfx要有反函数则它必须为单调函数.六、三角函数的图像和性质(一)正弦与余函数的图像与性质函数xysinxycos图像定域义RR值域1,11,16最值2,122,12xkykZxkykZ最大最小时,时,2,12,1xkykZxkykZ最大最小时,时,单调性[2,2]223[2,2]22Zkkkkk在每个上递增在每个上递减[2,2][2,2]Zkkkkk在每个上递增在每个上递减奇偶性奇函数偶函数周期性是周期函数,2为最小正周期是周期函数,2为最小正周期对称性对称中心(,0)k,:,()2xkkZ对称轴对称中心(,0)2k,:,()xkkZ对称轴2.正切与余切函数的图像与性质函数xytanxycot图像定域义{|,}2xxRxkkZ且{|,}xxRxkkZ且值域RR单调性(,)22Zkkk在每个上递增(,)Zkkk在每个上递减奇偶性奇函数奇函数周期性是周期函数,为最小正周期是周期函数,为最小正周期对称性对称中心(,0)2k对称中心(,0)2k7七、反三角函数的图像与性质1.反正弦与反余函数的图像与性质函数反正弦函数arcsinyx是sin,22yxx,的反函数反余弦函数arccosyx是cos0,yxx,的反函数图像定域义1,11,1值域,220,单调性[1,1]在上递增[1,1]在上递减奇偶性奇函数非奇非偶周期性无无对称性对称中心(0,0)对称中心(0,)22.反正切与反余切函数的图像与性质函数反正切函数arctanyx是tan(,)22yxx,的反函数反余切函数arccotyx是cot0,yxx,的反函数图像定域义(,,)(,,)值域,220,单调性(,,)在上递增(,,)在上递减奇偶性奇函数非奇非偶周期性无无对称性对称中心(0,0)对称中心(0,π/2)

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功