1/22九年级上册数学知识点总结归纳第二十一章一元二次方程第二十二章二次函数第二十三章旋转第二十四章圆第二十五章概率初步12/22第二十一章一元二次方程知识点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)。注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。知识点2:一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。X+a=b1x=-a+b2x=-a-b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aacbbx242(b2-4ac≥0)。步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解.⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2=3(x+4)中,不能随便约去x+4。⑷注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的3/22一般顺序是:开平方法→因式分解法→公式法.6.一元二次方程解的情况⑴b2-4ac≥0方程有两个不相等的实数根;⑵b2-4ac=0方程有两个相等的实数根;⑶b2-4ac≤0方程没有实数根。解题小诀窍:当题目中含有“两不等实数根”“两相等实数根”“没有实数根”时,往往首先考虑用b2-4ac解题。主要用于求方程中未知系数的值或取值范围。知识点3:根与系数的关系:韦达定理对于方程ax2+bx+c=0(a≠0)来说,x1+x2=—ab,x1●x2=ac。利用韦达定理可以求一些代数式的值(式子变形),如2122122212)(xxxxxx21212111xxxxxx。解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。知识点4:一元二次方程的应用一、考点讲解:1.构建一元二次方程数学模型,常见的模型如下:⑴与几何图形有关的应用:如几何图形面积模型、勾股定理等;⑵有关增长率的应用:此类问题是在某个数据的基础上连续增长(降低)两次得到新数据,常见的等量关系是a(1±x)2=b,其中a表示增长(降低)前的数据,x表示增长率(降低率),b表示后来的数据。注意:所得解中,增长率不为负,降低率不超过1。⑶经济利润问题:总利润=(单件销售额-单件成本)×销售数量;或者,总利润=总销售额-总成本。⑷动点问题:此类问题是一般几何问题的延伸,根据条件设出未知数后,要想办法把图中变化的线段用未知数表示出来,再根据题目中的等量关系列出方程。2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.一元二次方程与实际问题1、病毒传播问题2、树干问题4/223、握手问题(单循环问题)4、贺卡问题(双循环问题)5、围栏问题6、几何图形(道路、做水箱)7、增长率、降价率问题8、利润问题(注意减少库存、让顾客受惠等字样)9、数字问题10、折扣问题第二十二章二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2yaxbxc(abc,,是常数,0a)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a,而bc,可以为零.二次函数的定义域是全体实数.2.二次函数2yaxbxc的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵abc,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1.二次函数基本形式:2yax的性质:a的绝对值越大,抛物线的开口越小。2.2yaxc的性质:上加下减。a的符号开口方向顶点坐标对称轴性质0a0x时,y随x的增大而;0x时,y随x的增大而;0x时,y有最值.0a0x时,y随x的增大而;0x时,y随x的增大而;0x时,y有最值.a的符号开口方向顶点坐标对称轴性质0a0x时,y随x的增大而;0x时,y随x的增大而;0x时,y有最值.5/223.2yaxh的性质:左加右减。4.2yaxhk的性质:三、二次函数图象的平移1.平移步骤:方法一:⑴将抛物线解析式转化成顶点式2yaxhk,确定其顶点坐标;⑵保持抛物线2yax的形状不变,将其顶点平移到hk,处,具体平移方法如下:向右(h0)【或左(h0)】平移|k|个单位向上(k0)【或下(k0)】平移|k|个单位向右(h0)【或左(h0)】平移|k|个单位向右(h0)【或左(h0)】平移|k|个单位向上(k0)【或下(k0)】平移|k|个单位向上(k0)【或向下(k0)】平移|k|个单位y=a(x-h)2+ky=a(x-h)2y=ax2+ky=ax22.平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左右,上下”.方法二:0a0x时,y随x的增大而;0x时,y随x的增大而;0x时,y有最值.a的符号开口方向顶点坐标对称轴性质0axh时,y随x的增大而;xh时,y随x的增大而;xh时,y有最值.0axh时,y随x的增大而;xh时,y随x的增大而;xh时,y有最值.a的符号开口方向顶点坐标对称轴性质0axh时,y随x的增大而;xh时,y随x的增大而;xh时,y有最值.0axh时,y随x的增大而;xh时,y随x的增大而;xh时,y有最值.6/22⑴cbxaxy2沿y轴平移:向上(下)平移m个单位,cbxaxy2变成mcbxaxy2(或mcbxaxy2)⑵cbxaxy2沿轴平移:向左(右)平移m个单位,cbxaxy2变成cmxbmxay)()(2(或cmxbmxay)()(2)四、二次函数2yaxhk与2yaxbxc的比较从解析式上看,2yaxhk与2yaxbxc是两种不同的表达形式,后者通过配方可以得到前者,即22424bacbyaxaa,其中2424bacbhkaa,.五、二次函数2yaxbxc图象的画法五点绘图法:利用配方法将二次函数2yaxbxc化为顶点式2()yaxhk,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点0c,、以及0c,关于对称轴对称的点2hc,、与x轴的交点10x,,20x,(若与x轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.六、二次函数2yaxbxc的性质1.当0a时,抛物线开口向上,对称轴为2bxa,顶点坐标为2424bacbaa,.当2bxa时,y随x的增大而减小;当2bxa时,y随x的增大而增大;当2bxa时,y有最小值244acba.2.当0a时,抛物线开口向下,对称轴为2bxa,顶点坐标为2424bacbaa,.当2bxa时,y随x的增大而增大;当2bxa时,y随x的增大而减小;当2bxa时,y有最大值244acba.七、二次函数解析式的表示方法1.一般式:2yaxbxc(a,b,c为常数,0a);2.顶点式:2()yaxhk(a,h,k为常数,0a);3.两根式(两点式):12()()yaxxxx(0a,1x,2x是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240bac时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系7/221.二次项系数a二次函数2yaxbxc中,a作为二次项系数,显然0a.⑴当0a时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;⑵当0a时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小.2.一次项系数b在二次项系数a确定的前提下,b决定了抛物线的对称轴.⑴在0a的前提下,当0b时,02ba,即抛物线的对称轴在y轴左侧;当0b时,02ba,即抛物线的对称轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的右侧.⑵在0a的前提下,结论刚好与上述相反,即当0b时,02ba,即抛物线的对称轴在y轴右侧;当0b时,02ba,即抛物线的对称轴就是y轴;当0b时,02ba,即抛物线对称轴在y轴的左侧.总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.ab的符号的判定:对称轴abx2在y轴左边则0ab,在y轴的右侧则0ab,概括的说就是“左同右异”总结:3.常数项c⑴当0c时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要abc,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于x轴对称8/222yaxbxc关于x轴对称后,得到的解析式是2yaxbxc;2yaxhk关于x轴对称后,得到的解析式是2yaxhk;2.关于y轴对称2yaxbxc关于y轴对称后,得到的解析式是2yaxbxc;2yaxhk关于y轴对称后,得到的解析式是2yaxhk;3.关于原点对称2yaxbxc关于原点对称后,得到的解析式是2yaxbxc;2yaxhk关于原点对称后,得到的解析式是2yaxhk;4.关于顶点对称(即:抛物线绕顶点旋转180°)2yaxbxc