教学大纲第三章点、直线、平面的投影学时1.1.三视图的形成及其投影规律2.2.利用AutoCAD绘制三视图23.3.点、直线、平面在两、三面投影体系中的投影特征、作图方法24.4.点与直线、直线与直线的位置关系5.5.点与平面、直线与平面的位置关系6.6.平面与平面的位置关系27.7.用换面法求直线实长、平面真形2教学目的和要求本章通过介绍点、直线和平面的投影特点,使学生熟悉和掌握绘制、阅读工程图样以及图解空间几何问题所需的理论基础。重点难点本章的重点就是掌握点、直线和平面的投影特点,难点是如何图解空间几何问题。学习指导在学习点、直线和平面的投影时,要和立体的投影结合起来,要用“长对正、高平齐、宽相等”的规律研究几何元素的投影,反过来用几何元素的投影规律研究立体的投影。知识点教学安排知识点教学方法第一讲1.1.三视图的形成及其投影规律2.2.利用AutoCAD绘制三视图课件教具模型第二讲3.3.点、直线、平面的投影电子挂图第三讲4.4.直线和直线的位置关系5.5.直线和平面的位置关系6.6.平面和平面的位置关系电子挂图第四讲7.7.投影变换8.8.综合举例电子挂图教具【本章的总体教学设计】首先在第一讲介绍介绍三视图的形成及其投影规律,然后由同学完成平面立体的三视图绘制,此时的作业模型上不宜出现斜面;然后第二讲介绍点、直线和平面的投影规律,第二讲中要结合平面立体介绍点、线、面的投影,不宜单纯介绍点、线、面的投影,要用三视图的投影规律分析点、线、面的投影;第三讲点、线、面的相对位置可根据学时多少酌情处理,可深可浅,讲点、线、面的相对位置,也要结合立体研究,这时的模型可含有一些投影面垂直面或一般位置平面;第四讲的投影变换以换面法为主,可结合直角三角形法讲解,综合举例除画法几何的题目外要介绍含斜面比较多的模型三视图的绘制。点、线、面的投影及其相对位置介绍之后再由同学绘制一些复杂平面立体的投影。第一讲三视图的形成及其投影规律1.1.知识要点(1)(1)中心投影的概念(2)(2)斜投影的概念(3)(3)正投影的概念(4)(4)三视图的形成及其投影规律(5)(5)画三视图的方法和步骤(6)(6)利用AutoCAD绘制三视图2.2.教学设计用动画和电子挂图介绍三视图的形成及其投影规律,然后介绍三视图的画法,在介绍三视图的画法时,要紧紧抓住形体分析法,从一开始就要同学养成正确观察方法和正确的画图习惯,千万不能看到一条棱就画一条线,不作形体分析。在讲形体分析法时,对具体模型可灵活介绍线面分析法的方法,不能局限于教材的顺序,在组合体中才介绍形体分析法和线面分析法。这样为第四章的相贯线和截交线也打下了基础。3.3.课前准备准备好上课用的模型。4.4.教学内容(1)物体的投影为了得到物体的投影,必须具有投射线、物体和投影面三个条件,其中投射线可自一点发出,也可是一束与投影面成一定角度的平行线,这样就使投影法分为中心投影法和平行投影。图3-1物体的影子和投影(2)(2)心投影中心投影法的投射线自一点S发出,物体投影的大小取决于S到投影面的距离d和物体相对与投影面的距离,当d一定时,物体离光源S越近,投影越大。图3-2中心投影法(3)(3)行投影和正投影投射线为平行线时的投影称为平行投影。若投射线与投影面倾斜,则为斜投影;若投射线与投影面垂直,则为正投影。正投影的特性如下:1)1)实形性:当物体上的平面图形(或棱线)与投影面平行时,其投影反映实形(或实长);2)2)积聚性:当物体上的平面图形(或棱线)与投影面垂直时,其投影积聚为一条直线(或一个点);3)3)类似性:当物体上的平面图形(或棱线)与投影面倾斜时,其投影与原形状类似,即凹凸性、直曲性和边数类似,但平面图形变小了,线段变短了。图3-3斜投影和正投影(4)(4)视图的形成物体的一个视图只能反映出两个方向的尺寸情况,不同形状物体的某一视图可能会相同。所以,一个视图不能准确的表达物体的形状(图3-4)。在机械图样上有时也采用一个视图表达机械零件的形状,但是,这是必须附加说明,圆柱的直径标注“φ”,球体的直径标注“Sφ”,板的厚度标注“t”等。在装配图上大家都非常熟悉的标准件,如螺栓、轴承等通常也只画一个视图。图3-4不同物体的一个视图相同用互相垂直的两个平面作投影面,将物体向这两个投影面作正投影,这两个投影联合起来能表达物体长、宽、高三个方向的尺寸,所以,一般情况下两个视图能表达清楚物体的形状,但有些物体用两个视图也不能准确的表达其形状(图3-5),为了唯一确定物体的形状和大小必须采用多面投影,通常画出物体的两个或三个视图,每个视图表示物体的一个方面,几个视图配合起来就能全面、准确的表达物体的形状。三视图的形成过程1)1)将物体放入由V、H、W面组成的投影体系中,用正投影的方法分别得到物体的三个投影,在V面上的投影称为主视图,在H面上的投影称为俯视图,在W面上的投影称为左视图。2)2)拿走空间物体,保持V面不动,将H面绕X轴向下旋转90°,将W面绕Z轴向后旋转90°,和V面展平到一个平面内。3)3)通常不画投影面和投影轴,根据图纸的大小调整三个视图的相对位置,即得到物体的三视图(图3-6)。图3-5不同物体的两个视图相同图3-6三视图的形成(动画演示)(5)(5)视图的投影规律因为主视图反映了物体长度方向(方向)和高度方向(Z方向)的尺寸;俯视图反映了宽度方向(Y方向)和长度方向的尺寸;左视图反映了高度方向和宽度方向的尺寸。所以三个视图存在如下规律:1)1)主、俯视图长度相等----长对正2)2)主、左视图高度相等----高平齐3)3)俯、左视图宽度相等----宽相等“长对正、高平齐、宽相等”反映了三个视图的内在联系,不仅物体的总体尺寸要符合上述规律,物体上的每一个形体、平面、直线、点都遵从上述规律(图3-7)。图3-7三视图的投影规律(6)(6)视图中图线的含义1)1)轮廓线轮廓线的含义是:物体上投影有积聚性的平面;两个面(平面或曲面)的交线;曲面的转向轮廓线。粗实线:表示物体的可见轮廓线;虚线:表示物体的不见轮廓线。2)2)细点画线视图中的细点画线主要用来表示:回转面的轴线;圆的对称中心线;物体的对称中心线(图3-8)。图2-8三视图中图线的含义(7)(7)三视图的画法【例1】(动画演示)图3-8【例2】图3-9(8)(8)用AutoCAD绘制三视图图3-105.5.本讲作业绘制平面立体模型的三视图(16个模型)图3-11第二讲点、直线、平面的投影1.1.知识要点(1)(1)点的投影(2)(2)直线对投影面的相对位置及其投影规律(3)(3)线对投影面的相对位置及其投影规律2.2.教学设计(1)(1)点:重点讲三个点,三个坐标均不为0的点、一个坐标为0的点、两个坐标为0的点。(2)(2)直线:先讲投影面垂直线,再讲投影面平行线,最后讲一般位置直线。(3)(3)平面:先讲投影面平行面,再讲投影面垂直面,最后讲一般位置平面。3.3.教学内容(1)点的投影空间点对于由V、H和W面组成的投影体系有三种位置关系:1)1)当点的x、y、z坐标均不为零时,点的三面投影均落在投影面内;2)2)当点的x、y、z坐标有一个为零时,空间点在投影面上,其两个投影落在投影轴上,特别值得注意的是,当点在H面上时,其W面的投影落在Y轴上,当按三视图的形成方法展开投影体系时,其W面投影随Y轴一起绕Z轴向后旋转落在YW轴上。3)3)当点的x、y、z坐标均有两个为零时,空间点在投影轴上,其一个投影与原点重合。无论点在空间处于什么位置,其三面投影仍然遵守长对正、高平齐、宽相等的投影规律(图3-12)。图3-12点的投影(动画演示)(2)(2)直线的投影空间直线对投影面有三种位置关系:平行、垂直和倾斜(一般位置)。1)1)投影面垂直线若空间直线垂直于一个投影面,则必平行于其他两个投影面,这样的直线称之为投影面垂直线,对于垂直于V、H、W面的直线分别称之为正垂线、铅垂线和侧垂线。投影面垂直线在其垂直的投影面上的投影积聚为一个点,其他两个投影面上投影垂直于相应的投影轴,且反映实长。如表3-1所示。表3-1投影面垂直线2)2)投影面平行线若空间直线平行于一个投影面,倾斜于其他两个投影面,这样的直线称之为投影面平行线,按其平行于V、H、W面分别称之为正平线、水平线和侧平线。投影面平行线在其平行的投影面上的投影反映实长,其他两个投影面上投影垂直于相应的投影轴,且投影线段的长小于空间线段的实长。如表3-2所示表3-2投影面平行线3)3)一般位置直线一般位置直线和三个投影面均处于倾斜位置,其三个投影和投影轴倾斜,且投影线段的长小于空间线段的实长。从投影图上也不能直接反映出空间直线和投影平面的夹角。如图3-13所示。图3-13一般位置直线(3)(3)平面的投影空间平面对投影面有三种位置关系:平行、垂直和一般位置。1)1)投影面平行面若空间平面平行于一个投影面,则必垂直于其他两个投影面,这样的平面称之为投影面平行,对平行于V、H、W面的平面分别称之为正平面、水平面和侧平面。投影面平行面在其平行的投影面上的投影反映实形,其他两个投影面上投影积聚成一条直线,且平行于相应的投影轴,如表3-3所示。2)2)投影面垂直面若空间平面垂直于一个投影面,而倾斜于其他两个投影面,这样的平面称之为投影面垂直面,按垂直于V、H、W面的平面分别称之为正垂面、铅垂面和侧垂面。投影面垂直面在其垂直的投影面上的投影积聚成一条直线,该直线和投影轴的夹角反映了空间平面和其他两个投影面所成的二面角,其他两个投影面上的投影为类似形,如表3-4所示。3)3)一般位置平面若空间平面和三个投影面均处于倾斜位置,称之为一般位置平面。一般位置平面在三个投影面上的投影均为类似形,在投影图上不能直接放映空间平面和投影面所成的二面角。如图2-14所示表3-3投影面平行面表3-4投影面垂直面图3-14一般位置平面4.4.本讲作业习题集第三讲平面内的点和直线1.1.知识要点(1)(1)点和直线的位置关系(2)(2)线和直线的位置关系:平行、相交、异面(3)(3)点和平面的位置关系(4)(4)直线和平面的位置关系(5)(5)平面和平面的位置关系2.2.教学设计不讲太难的画法几何题目,只介绍点、线、面之间的相对位置及其投影特性,同时结合模型讲相对位置。要注意教学大纲要求直线和平面、平面与平面的位置关系,只研究至少一个元素和投影面处于特殊位置的情况。3.3.课前准备熟悉课件中的素材,整理自己的演示文稿4.4.教学内容(1)(1)点和直线的位置关系点和直线的位置关系有两种:点在直线上和点不在直线上。若点在直线上,点的三面投影必落在直线的三面投影上,且点分空间线段所成的比等于点的投影所分线段的投影所成的比;若点不在直线上,则点的三个投影至少有一个投影不在直线的投影上。如图3-15所示。图3-15点和直线的位置关系(2)(2)直线和直线的位置关系直线和直线的位置关系有平行、相交和异面(交叉)。1)1)平行若空间两直线平行,则其三投影必平行,当空间直线为一般位置直线时,若直线的两个投影对应平行,即可断定空间两直线平行;当空间直线为投影面图3-16两直线平行平行线时,若两个投影对应平行,且其中一个投影反映两直线的实长,也可断定空间两直线平行,若两投影均不反映实长,则不能由两个投影断定空间直线平行;当空间两直线同时垂直于一个投影面时,两直线平行。如图3-16所示的直线中,L1和L2、K1和K2、M1和M2、AB和CD四对直线中只有一对直线不平行,你能断定是哪对直线吗?2)2)空间两直线相交若空间两直线相交,则三个投影必相交,且交点符合点的投影规律,若三个投影必相交,但交点不符合点的投影规律,则空间两直线异面。图3-17中,L1和L2、K1和K2、M1和M2、AB和CD四对直线中只有一对直线不相交,你能断定是哪对直线吗?图3-17两直线相交3)3)异面直线异面直线是非共面的两条直线,若其投影线段相交,则交点对应于异面直线上的不同点,称之为重影点,对重影点可见性的判断,可以帮助判断两直线的交叉关系。图3-18所示直线中