2014年上海市初中毕业统一学业考试数学试卷一、选择题(每小题4分,共24分)1.计算23的结果是().(A)5;(B)6;(C)23;(D)32.2.据统计,2013年上海市全社会用于环境保护的资金约为60800000000元,这个数用科学记数法表示为().(A)608×108;(B)60.8×109;(C)6.08×1010;(D)6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A)y=x2-1;(B)y=x2+1;(C)y=(x-1)2;(D)y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A)∠2;(B)∠3;(C)∠4;(D)∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是().(A)50和50;(B)50和40;(C)40和50;(D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.二、填空题(每小题4分,共48分)7.计算:a(a+1)=____________.8.函数11yx的定义域是_______________.9.不等式组12,28xx的解集是_____________.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是____________.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________.14.已知反比例函数kyx(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设ABa,BCb,那么DE=_______________(结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为________(用含t的代数式表示).三、解答题(本题共7题,满分78分)19.(本题满分10分)计算:131128233.20.(本题满分10分)解方程:2121111xxxx.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm)4.2…8.29.8体温计的读数y(℃)35.0…40.042.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=5,求BE的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.24.(本题满分12分,每小题满分各4分)在平面直角坐标系中(如图),已知抛物线223yxbxc与x轴交于点A(-1,0)和点B,与y轴交于点C(0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP//CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.图1备用图参考答案:1-6,BCCAAB,7,2aa8,1x9,34x10,35211,1k12,2613,1314,1(0ykx即可)15,23ab16,乙17,-918,23t19,23320,0;1(xx舍)21,(1)1.2529.75yx,(2)37.525,sinBsinCAE5BDCBCAE5;2525cos4;25sin2tanCAE13CDABBCBACBCEACBEBCCE23,求证:四边形ACED是平行四边形;,//DE//,,ABCDADBDACACDEABDCDEACADCEADECBDDCADCA=等腰梯形,为为(2)联结AE,交BD于点G,求证:DGDFGBDB.//,;,,;DGADDFADADBCGBBEFBBCDFADDFADFBBCDFFBADBCADECADCEADBCBEDFADDFADDFFBADBCDBBEDGDFGBDB为24,2517、(本小题满分13分)已知二次函数()yfx的图像经过坐标原点,其导函数为()62fxx。数列na的前n项和为nS,点*(,)()nnSnN均在函数()yfx的图像上。(Ⅰ)求数列na的通项公式;(Ⅱ)设13nnnbaa,nT是数列nb的前n项和,求使得20nmT对所有*nN都成立的最小正整数m。17、本小题主要考查二次函数、等差数列、数列求和、不等式等基础和基本的运算技能,考查分析问题的能力和推理能力。解:(I)依题意可设2()(0),fxaxbxa则`()2fxaxb由`()62fxx得3,2,ab所以2()32.fxxx又由点(,)nnS(*)nN均在函数()yfx的图像上得232nSnn当2n时221323(1)2(1)65nnnaSSnnnnn当1n时2113121615aS所以*65()nannN(II)带入an的值之后,考虑用拆项相消即可。由(I)得133111(),(65)6(1)526561nnnbaannnn故,111111(1)()()277136561nTnn一定要写上关键步骤,多写几步,防止出错,保证得分。=11(1).261n因此使得*11(1)()26120mnNn成立的m必须且必须满足1,220m放缩法求值,即10m故满足最小的正整数m为10。(19)(本小题满分12分)已知等差数列{}na的公差为2,前n项和为nS,且124,,SSS成等比数列.(Ⅰ)求数列{}na的通项公式;(Ⅱ)令114(1)nnnnnbaa,求数列{}nb的前n项和nT.解析:(1)124,,SSS成等比数列,所以s2*s2=s1*s3;S4=4a1+(上底加下底)×高/2=寻找关于a的关系式,解方程即可。(2)显然,需要利用拆项相消法。又因为无法确定正负,所以需要对n的取值进行分类讨论。应该确保满分。