2019年10月9日星期三必修5第三课时2019年10月9日星期三一.复习回顾:an-an-1=d(d是常数)1.等差数列的定义2.等差数列的单调性当d=0时,{an}为常数列;当d0时,{an}为递增数列;当d0时,{an}为递减数列;3.等差数列的通项公式dnaan)1(1,*nN2019年10月9日星期三4.等差数列的函数特性nfandadn1一次函数等差数列是一次函数的斜率公差d1,111naaddnaann得由斜率公式2019年10月9日星期三5.等差中项若a,A,b成等差数列,则A叫做a与b的等差中项22baAbaA之间的关系bAa,,an=am+(n-m)d.6.等差数列通项公式的推广:斜率公式mnaadmn2019年10月9日星期三设项技巧:(1)若有三个数成等差数列,则可设为,,adaad-+(2)若有四个数成等差数列,则可设为3,,,3adadadad--++(3)若有五个数成等差数列,则可设为2,,,,2adadaadad--++公差为d公差为2d公差为d2019年10月9日星期三也成等差数列成等差数列,则若nmlaaanml,,,,nlmnmlaaaaaa2,,成等差数列dnadladma1112111成等差数列nmlnlm,,27.等差数列的性质性质1也成等差数列成等差数列,则若nmlaaanml,,,,2019年10月9日星期三已知一个等差数列的首项为a1,公差为da1,a2,a3,……an(1)将前m项去掉,其余各项组成的数列是等差数列吗?如果是,他的首项与公差分别是多少?am+1,am+2,……an是等差数列首项为am+1,公差为d,项数为n-m2019年10月9日星期三已知一个等差数列的首项为a1,公差为da1,a2,a3,……an(2)取出数列中的所有奇数项,组成一个数列,是等差数列吗?如果是,他的首项与公差分别是多少?a1,a3,a5,……是等差数列首项为a1,公差为2d取出的是所有偶数项呢?a2,a4,a6,……是等差数列首项为a2,公差为2d2019年10月9日星期三已知一个等差数列的首项为a1,公差为da1,a2,a3,……an(3)取出数列中所有项是7的倍数的各项,组成一个数列,是等差数列吗?如果是,他的首项与公差分别是多少?a7,a14,a21,……是等差数列首项为a7,公差为7d取出的是所有k倍数的项呢?ak,a2k,a3k,……是等差数列首项为ak,公差为kd2019年10月9日星期三已知一个等差数列的首项为a1,公差为da1,a2,a3,……an(4)数列a1+a2,a3+a4,a5+a6,……是等差数列吗?公差是多少?a1+a2,a3+a4,a5+a6,……是等差数列,公差为2d数列a1+a2+a3,a2+a3+a4,a3+a4+a5……是等差数列吗?公差是多少?a1+a2+a3,a2+a3+a4,a3+a4+a5……是等差数列,公差为3d。2019年10月9日星期三例1:963852741aaa,13aaa19,aaa求等差数列中,2019年10月9日星期三性质2:设若则*m,n,p,qNmnpqaaaa.mnpq,1a111(1)(1)2(2)mnaaamdandamndmnpqmnpqaaaa证明:设首项为,则111(1)(1)2(2)pqaaapdaqdapqd推论:在等差数列中,与首末两项距离相等的两项和,等于首末两项的和,即123121knknnnaaaaaaaa2,2mnpmnpaaa若则有特别地,p=q时,即注意:逆命题是不一定成立的;2019年10月9日星期三7153aaa(1)a83641aaaa(2)a732651aaaaa(3)a45433aaa(4)a35434aaa(5)a判断:可推广到三项,四项等注意:等式两边作和的项数必须一样多√×√√×2019年10月9日星期三练习.在等差数列{an}中,(1)已知a6+a9+a12+a15=20,求:a1+a20(2)已知a3+a11=10,求:a6+a7+a8(3)已知a2+a14=10,能求出a16吗?1015例2.在等差数列{an}中,a6=19,a15=46,求a4+a17的值.不能(4)在等差数列{an}中a1-a5+a9-a13+a17=117,则a3+a15=()1172019年10月9日星期三若数列{an}是等差数列,公差为d,设c,k为常数,则{an+k}____等差数列,公差为______;则{c·an+k}____等差数列,公差为______.若数列{an}为等差数列,公差为d,则{kan}____等差数列,公差为_____.(k是常数)若数列{an}与{bn}都为等差数列,公差分别为d1,d2,则{an+bn}_____等差数列,公差为_____;则{an-bn}_____等差数列,公差为_____,也是kd性质3.也是也是dcd性质4.性质5.{pan+qbn}_____等差数列,公差为_______.(p,q为常数)也是也是也是d1+d2d1-d2pd1+qd22019年10月9日星期三20082008989811nnba,15b,85a,66b,34a}b{}a{3求中,和:等差数列例2019年10月9日星期三例4(1)已知等差数列{an}中,a3+a15=30,求a9,a7+a11解:(1)∵a9是a3和a15的等差中项∴(2)已知等差数列{an}中,a3+a4+a5+a6+a7=150,求a2+a8的值1523021539aaa∵7+11=3+15(2)∵3+7=4+6=5+5∴a3+a4+a5+a6+a7=5a5=150即a5=30故a2+a8=2a5=60∴a7+a11=a3+a15=30∴a3+a7=a4+a6=2a52019年10月9日星期三(1)等差数列{an}中,a3+a9+a15+a21=8,则a12=(2)已知等差数列{an}中,a3和a15是方程x2-6x-1=0的两个根,则a7+a8+a9+a10+a11=215(3)已知等差数列{an}中,a3+a5=-14,2a2+a6=-15,则a8=跟踪训练2-19(4)已知a4+a5+a6+a7=56,a4a7=187,求a14及公差d.d=_2a14=_3d=2a14=31或2019年10月9日星期三1.等差数列{an}的前三项依次为a-6,2a-5,-3a+2,则a等于()A.-1B.1C.-2D.2B2.在数列{an}中a1=1,an=an+1+4,则a10=2(2a-5)=(-3a+2)+(a-6)提示1:提示:d=an+1—an=4-353.在等差数列{an}中(1)若a59=70,a80=112,求a101;(2)若ap=q,aq=p(p≠q),求ap+qd=2,a101=154d=-1,ap+q=0本节练习2019年10月9日星期三2{}{}ABCD1-nnnnnnnnnnabbabababa思考:已知数列是等差数列,则数列为等差数列的是()、、、、D2019年10月9日星期三练习已知,求的值。)(21)(2)1(,2)1(*Nnnfnff)2007(f100523200721)2007(2321)(212)(21)()1(1)(2)1(2fnnfnfnfnfnfnf即的等差数列,公差为是首项为解:2019年10月9日星期三五、小结1.定义:an-an-1=d(n≥2)或an+1-an=d(n∈N*)2.通项公式an=a1+(n-1)dan=am+(n-m)d{an}为等差数列3.等差数列的性质an+1-an=dan+1=an+dan=a1+(n-1)dan=kn+b(k、b为常数)212nnnaaa2019年10月9日星期三mnaadnaadaadmnnnn)()()(3121114.d的计算方法5.判断等差数列的方法:为等差数列常数定义法:}{)1)(()1(1nnnandaa为等差数列常数:中项公式法递推法}{)1n)((2)()2(21nnnnaaaa为等差数列的一次函数为一次函数法:}{)3(nnana2019年10月9日星期三课后作业:1..11618,求这三个数,平方和为它们的和为并且数列是递增的,已知三个数成等差数列2..,4,6}1{)2(1061aaaan求是等差数列,且已知.2310,5)1(1的范围,求公差项大于第等差数列da.14416,求这四个数且四数的平方和为,,四个数的和为已知四个数成等差数列3.2019年10月9日星期三在等差数列{an}中(1)已知a6+a9+a12+a15=40,求a1+a20(2)已知a3+a11=20,求a6+a7+a8.4,12}{6473求数列通项公式,,满足等差数列aaaaan5.4.6..,66,33352515的值求在等差数列中,aaa