数列求和方法大全例题变式解析答案——强烈推荐

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

11.7数列前n项和求法知识点一倒序相加法特征描述:此种方法主要针对类似等差数列中112nnaaaa,具有这样特点的数列.思考:你能区分这类特征吗?知识点二错位相减法特征描述:此种方法主要用于数列}{nnba的求和,其中}{na为等差数列,}{nb是公比为q的等比数列,只需用nnSqS便可转化为等比数列的求和,但要注意讨论q=1和q≠1两种情况.思考:错位时是怎样的对应关系?知识点三分组划归法特征描述:此方法主要用于无法整体求和的数列,例如1,112,11124,……,11124+……+112n,可将其通项写成等比、等差等我们熟悉的数列分别进行求和,再综合求出所有项的和.思考:求出通项公式后如何分组?知识点四奇偶求合法特征描述:此种方法是针对于奇、偶数项,要讨论的数列例如11357(1)(21)nnSn,要求Sn,就必须分奇偶来讨论,最后进行综合.思考:如何讨论?2知识点五裂项相消法特征描述:此方法主要针对12231111nnaaaaaa这样的求和,其中{an}是等差数列.思考:裂项公式你知道几个?知识点六分类讨论法特征描述:此方法是针对数列{na}的其中几项符号与另外的项不同,而求各项绝对值的和的问题,主要是要分段求.思考:如何表示分段求和?考点一倒序相加法例题1:等差数列求和12nnSaaa变式1:求证:nnnnnnnCnCCC2)1()12(53210变式2:数列求和2222sin1sin2sin3sin89考点二错位相减法例题2:试化简下列和式:21123(0)nnSxxnxx变式1:已知数列)0()12(,,5,3,112aanaan,求前n项和。3变式2:求数列23,2,3,,,naaana;的前n项和变式3:求和:nnanaaaS32321考点三:分组划归法例三:求数列1,112,11124,……,11124+……+112n的和.变式1:5,55,555,5555,…,5(101)9n,…;变式2:13,24,35,,(2),nn;变式3:数列1,(1+2),(1+2+22),……(1+2+22+…+2n-1),……前n项的和是()A.2nB.2n-2C.2n+1-n-2D.n2n考点四:奇偶求合法例四:11357(1)(21)nnSn4变式1:求和:n1nSn-3…(-1)(4)nN变式2:已知数列{an}中a1=2,an+an+1=1,Sn为{an}前n项和,求Sn变式3:已知数列{an}中a1=1,a2=4,an=an-2+2(n≥3),Sn为{an}前n项和,求Sn考点五:裂项相消法例五:{an}为首项为a1,公差为d的等差数列,求12233411111nnnSaaaaaaaa变式1:1111,,,,,132435(2)nn;变式2:数列通项公式为11nann;求该数列前n项和变式3::求和)12)(12()2(534312222nnnSn5考点六:分类讨论法例六:在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,an;(2)若d0,求|a1|+|a2|+|a3|+…+|an|.变式1:在等差数列}{na中,,369181716aaaa其前n项和为nS.(1)求nS的最小值,并求出nS的最小值时n的值;(2)求nnaaaT21.变式2:设数列}{na满足132,511naaann,已知存在常数qp,使数列}{qpnan为等比数列.求naaa21.变式3:已知等比数列{na}中,1a=64,q=21,设nb=log2na,求数列{|nb|}的前n项和nS.6答案及解析考点一例一:等差数列求和12nnSaaa111()[(1)]aadand①把项的次序反过来,则:()[(1)]nnnnSaadand②①+②得:1112()()nnnnnSaaaaaa个1()nnaa1()2nnnaaS变式1:思路分析:由mnnmnCC可用倒序相加法求和。证:令)1()12(53210nnnnnnCnCCCS则)2(35)12()12(0121nnnnnnnnCCCCnCnSmnnmnCCnnnnnnCnCnCnCnS)22()22()22()22(2:)2()1(210有nnnnnnnnCCCCnS2)1(])[1(210等式成立变式2:设2222sin1sin2sin3sin89S,又∵2222sin89sin88sin87sin1S,∴289S,892S.考点二例二:21123(0)nnSxxnxx7解:①若x=1,则Sn=1+2+3+…+n=(1)2nn②若x≠1,则21123nnSxxnx2323nnxSxxxnx两式相减得:2(1)1nxSxx+…+nnnxx111nnxnxx∴21(1)1nnnxnxSxx变式1:思路分析:已知数列各项是等差数列1,3,5,…2n-1与等比数列120,,,,naaaa对应项积,可用错位相减法求和。解:1)12(53112nnanaaS2)12(5332nnanaaaaSnnnanaaaaSa)12(22221)1(:21132当nnnnaaaSaa)12()1()1(21)1(,121时21)1()12()12(1aananaSnnn当2,1nSan时变式2:2323nnSaaana,当1a时,123nS…(1)2nnn,当1a时,2323nSaaa…nna,23423naSaaa…1nna,两式相减得23(1)naSaaa…11(1)1nnnnaaananaa,8∴212(1)(1)nnnnanaaSa.变式3:nnanaaaS32321解:⑴2)1(3211nnnSan时,⑵01aa时,因为nnanaaaS32321①1321211nnnananaaSa②由①-②得:)1)1()1()1()1(2)1()1()1()1(11)11(1111)11(22112aaaanaaannSaaanaaSanaaaanaaaSannnnnnnnnnn综上所述,所以考点三例三:求数列1,112,11124,……,11124+……+112n的和.解:∵11111242nna111()1221212nn∴1111(1)(1)224nS91111(1)242n211(21)(2)(2)2211(2)2n11112(1)242nn11222nn变式1:555555555nnS个5(999999999)9n个235[(101)(101)(101)(101)]9n235505[10101010](101)9819nnnn.变式2:∵2(2)2nnnn,∴原式222(123…2)2(123n…)n(1)(27)6nnn.变式3:C考点四例四:解:当n=2k(kN+)时,2(13)(57)nkSS[(43)(41)]kk2kn当21()nkkN时,21222[(41)]nkkkSSSakk1021kn综合得:1(1)nnSn变式1:解:当n为偶数时:S1591342nnnnn当n为奇数时:159134n32nS(4-3)(4-)n-1nnnn变式2:解:①当n为偶数时:12341nnnSaaaaaa…12341()()()122nnnnaaaaaa…②当n为奇数时:123451()()()nnnSaaaaaaa…13222nn变式3:解:∵an-an-2=2(n≥3)∴a1,a3,a5,…,a2n-1为等差数列;a2,a4,a6,…,a2n为等差数列当n为奇数时:11(1)22nnan当n为偶数时:4(1)222nnan即n∈N+时,1(1)nnan∴①n为奇数时:1(1)(123)2122nnnnSnn…②n为偶数时:(1)(123)222nnnnSnn…考点五例五:解:∵1111()()kkkkkkkkadaaaaaddaad111111111()()kkkkdaaddaa∴1223111111()()nSdaadaa1111()nndaa122311111111[()()()]nndaaaaaa1111()ndaa111[(1)]naand变式1:∵1111()(2)22nnnn,∴11111111[(1)()()()]2324352nSnn1111(1)2212nn.变式2:解:∵1111(1)(1)nnnannnnnnnn∴11121321nSnn(21)(32)(1)nn11n.变式3:思路分析:分式求和可用裂项相消法求和.解:)121121(211)12)(12(11)12)(12(11)2()12)(12()2(22kkkkkkkkkkak12)1(2)1211(21)]121121()5131()311[(2121nnnnnnnnaaaSnn12练习:求nnanaaaS32321答案:)1()1()1()1()1(2)1(2aaaanaaannSnnn考点六例六:解:(1))由题意得a1·5a3=(2a2+2)2,即d2-3d-4=0.所以d=-1或d=4.所以an=-n+11,n∈N*或an=4n+6,n∈N*.(2)设数列{an}的前n项和为Sn.因为d0,由(1)得d=-1,an=-n+11,则当n≤11时,|a1|+|a2|+|a3|+…+|an|=-12n2+212n.当n≥12时,|a1|+|a2|+|a3|+…+|an|=-Sn+2S11=12n2-212n+110.综上所述,|a1|+|a2|+|a3|+…+|an|=-12n2+212n,n≤11,12n2-212n+110,n≥12.变式1:解:(1)当20n或21时,nS的最小值为-630.(2)21,126021232321,21232322nnnnnnTn变式2:3,26011323,224113211221nnnnnnaaannn变式3:解:na=1a1nq=n7213∴nb=log2na=n7(1)当n≤7时,nb≥0此时,nS=-212n+213n(2)当n>7时,nb0此时,nS=

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功