初中数学反比例函数难题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共10页)1.如图,双曲线y=的一个分支为()A.①B.②C.③D.④2.如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A.B.C.D.3.直线y=ax(a>0)与双曲线y=交于A(x1,y1)、B(x2,y2)两点,则4x1y2﹣3x2y1=.4.如图,直线y=x与双曲线y=(x>0)交于点A.将直线y=x向右平移个单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,若,则k=.5.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.第2页(共10页)6.已知(x1,y1),(x2,y2)为反比例函数y=图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)7.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为.8.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=.9.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=.第3页(共10页)10.如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.第4页(共10页)参考答案与试题解析1.(2006•长春)如图,双曲线y=的一个分支为()A.①B.②C.③D.④【解答】解:∵在y=中,k=8>0,∴它的两个分支分别位于第一、三象限,排除①②;又当x=2时,y=4,排除③;所以应该是④.故选D.2.(2014•盐城)如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A.B.C.D.【解答】解:如图,∵点A坐标为(﹣1,1),∴k=﹣1×1=﹣1,∴反比例函数解析式为y=﹣,∵OB=AB=1,第5页(共10页)∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(﹣,t),∵PB=PB′,∴t﹣1=|﹣|=,整理得t2﹣t﹣1=0,解得t1=,t2=(不符合题意,舍去),∴t的值为.故选:A.3.(2009•荆门)直线y=ax(a>0)与双曲线y=交于A(x1,y1)、B(x2,y2)两点,则4x1y2﹣3x2y1=﹣3.【解答】解:由题意知,直线y=ax(a>0)过原点和一、三象限,且与双曲线y=交于两点,则这两点关于原点对称,∴x1=﹣x2,y1=﹣y2,又∵点A点B在双曲线y=上,∴x1×y1=3,x2×y2=3,∴原式=﹣4x2y2+3x2y2=﹣4×3+3×3=﹣3.第6页(共10页)4.(2009•武汉)如图,直线y=x与双曲线y=(x>0)交于点A.将直线y=x向右平移个单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,若,则k=12.【解答】解:设点A的坐标为(a,a),∵=2,取OA的中点D,∴点B相当于点D向右平移了个单位,∵点D的坐标为(a,a),∴B点坐标为(+a,a),∵点A,B都在反比例函数y=的图象上,∴a×a=a×(+a),解得a=3或0(0不合题意,舍去)∴点A的坐标为(3,4),∴k=12.5.(2015•甘南州)如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.第7页(共10页)【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴矩形ABCD的面积为3﹣1=2.故答案为:2.6.(2013•达州)已知(x1,y1),(x2,y2)为反比例函数y=图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为﹣1.(只需写出符合条件的一个k的值)【解答】解:∵x1<x2<0,∴A(x1,y1),B(x2,y2)同象限,y1<y2,∴点A,B都在第二象限,∴k<0,例如k=﹣1等.故答案为:﹣1.(小于0均可)7.(2015•邯郸一模)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为4.第8页(共10页)【解答】解:设C的坐标为(m,n),又A(﹣2,﹣2),∴AN=MD=2,AF=2,CE=OM=FD=m,CM=n,∴AD=AF+FD=2+m,AB=BN+NA=2+n,∵∠A=∠OMD=90°,∠MOD=∠ODF,∴△OMD∽△DAB,∴=,即=,整理得:4+2m=2m+mn,即mn=4,则k=4.故答案为4.8.(2010•衡阳)如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=2.【解答】解:过D点作DE⊥x轴,垂足为E,∵在Rt△OAB中,∠OAB=90°,∴DE∥AB,∵D为Rt△OAB斜边OB的中点D,第9页(共10页)∴DE为Rt△OAB的中位线,∴DE∥AB,∴△OED∽△OAB,∴两三角形的相似比为:=∵双曲线y=(k>0),可知S△AOC=S△DOE=k,∴S△AOB=4S△DOE=2k,由S△AOB﹣S△AOC=S△OBC=3,得2k﹣k=3,解得k=2.故本题答案为:2.9.(2015•宁德)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=3.【解答】解:连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=四边形ODBE的面积=3,第10页(共10页)∵BE=2EC,∴△OCE的面积=△OBE的面积=,∴k=3;故答案为:3.10.(2013•成都)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.【解答】解:(1)将A的坐标代入y1=x+1,得:m+1=2,解得:m=1,故点A坐标为(1,2),将点A的坐标代入:,得:2=,解得:k=2,则反比例函数的表达式y2=;(2)结合函数图象可得:当0<x<1时,y1<y2;当x=1时,y1=y2;当x>1时,y1>y2.

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功