一元二次方程的解法复习课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一元二次方程的解法复习你学过一元二次方程的哪些解法?因式分解法开平方法配方法公式法你能说出每一种解法的特点吗?方程的左边是完全平方式,右边是非负数;即形如x2=a(a≥0)12xa,xa1.化1:把二次项系数化为1;2.移项:把常数项移到方程的右边;3.配方:方程两边同加一次项系数一半的平方;4.变形:化成5.开平方,求解(xm)a+=2“配方法”解方程的基本步骤★一除、二移、三配、四化、五解.用公式法解一元二次方程的前提是:1.必需是一般形式的一元二次方程:ax2+bx+c=0(a≠0).2.b2-4ac≥0..04acb.2a4acbbx221.用因式分解法的条件是:方程左边能够分解,而右边等于零;2.理论依据是:如果两个因式的积等于零那么至少有一个因式等于零.因式分解法解一元二次方程的一般步骤:一移-----方程的右边=0;二分-----方程的左边因式分解;三化-----方程化为两个一元一次方程;四解-----写出方程两个解;请用四种方法解下列方程:4(x+1)2=(2x-5)2先考虑开平方法,再用因式分解法;最后才用公式法和配方法;1.关于y的一元二次方程2y(y-3)=-4的一般形式是___________,它的二次项系数是_____,一次项是_____,常数项是_____2y2-6y+4=02-6y43.若x=2是方程x2+ax-8=0的解,则a=2()21Axy250Bx238Cxx3862DxxB2、下列方程是一元二次方程的是C4.下面是某同学在一次数学测验中解答的填空题,其中答对的是()A、若x2=4,则x=2B、若3x2=6x,则x=2C、若x2+x-k=0的一个根是1,则k=223222D、若的值为零,则xxxx3.公式法:221.222.530按要求解下列方程:因式分解法:3配方法:2xxxxx21121122xxyyy总结:方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。①x2-3x+1=0②3x2-1=0③-3t2+t=0④x2-4x=2⑤2x2-x=0⑥5(m+2)2=8⑦3y2-y-1=0⑧2x2+4x-1=0⑨(x-2)2=2(x-2)适合运用直接开平方法;适合运用因式分解法;适合运用公式法;适合运用配方法.①一般地,当一元二次方程一次项系数为0时(ax2+c=0),应选用直接开平方法;若常数项为0(ax2+bx=0),应选用因式分解法;若一次项系数和常数项都不为0(ax2+bx+c=0),先化为一般式,看一边的整式是否容易因式分解,若容易,宜选用因式分解法,不然选用公式法;不过当二次项系数是1,且一次项系数是偶数时,用配方法也较简单。我的发现②公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法)用最好的方法求解下列方程1)(3x-2)²-49=02)(3x-4)²=(4x-3)²3)4y=1-y²32选择适当的方法解下列方程:x221)1)(x(x81)(3x1)(2x78497)x(2x62x7)x(3x59x2)(x44x13x32x5x21x251612222222ax2+c=0====ax2+bx=0====ax2+bx+c=0====因式分解法公式法(配方法)2、公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法)3、方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。1、直接开平方法因式分解法

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功