最新人教版数学精品教学资料章末总结知识点一四种命题间的关系命题是能够判断真假、用文字或符号表述的语句.一个命题与它的逆命题、否命题之间的关系是不确定的,与它的逆否命题的真假性相同,两个命题是等价的;原命题的逆命题和否命题也是互为逆否命题.【例1】判断下列命题的真假.(1)若x∈A∪B,则x∈B的逆命题与逆否命题;(2)若0x5,则|x-2|3的否命题与逆否命题;(3)设a、b为非零向量,如果a⊥b,则a·b=0的逆命题和否命题.知识点二充要条件及其应用充分条件和必要条件的判定是高中数学的重点内容,综合考察数学各部分知识,是高考的热点,判断方法有以下几种:(1)定义法(2)传递法:对于较复杂的关系,常用推出符号进行传递,根据这些符号所组成的图示就可以得出结论.互为逆否的两个命题具有等价性,运用这一原理,可将不易直接判断的命题化为其逆否命题加以判断.(3)等价命题法:对于含有逻辑联结词“非”的充分条件、必要条件的判断,往往利用原命题与其逆否命题是等价命题的结论进行转化.(4)集合法:与逻辑有关的许多数学问题可以用范围解两个命题之间的关系,这时如果能运用数形结合的思想(如数轴或Venn图等)就能更加直观、形象地判断出它们之间的关系.【例2】若p:-2a0,0b1;q:关于x的方程x2+ax+b=0有两个小于1的正根,则p是q的什么条件?【例3】设p:实数x满足x2-4ax+3a20,a0.q:实数x满足x2-x-6≤0或x2+2x-80.且綈p是綈q的必要不充分条件,求实数a的取值范围.知识点三逻辑联结词的应用对于含逻辑联结词的命题,根据逻辑联结词的含义,利用真值表判定真假.利用含逻辑联结词命题的真假,判定字母的取值范围是各类考试的热点之一.【例4】判断下列命题的真假.(1)对于任意x,若x-3=0,则x-3≤0;(2)若x=3或x=5,则(x-3)(x-6)=0.【例5】设命题p:函数f(x)=lgax2-x+116a的定义域为R;命题q:不等式2x+11+ax对一切正实数均成立.如果命题p或q为真命题,命题p且q为假命题,求实数a的取值范围.知识点四全称命题与特称命题全称命题与特称命题的判断以及含一个量词的命题的否定是高考的一个重点,多以客观题出现.全称命题要对一个范围内的所有对象成立,要否定一个全称命题,只要找到一个反例就行.特称命题只要在给定范围内找到一个满足条件的对象即可.全称命题的否定是特称命题,应含存在量词.特称命题的否定是全称命题,应含全称量词.【例6】写出下列命题的否定,并判断其真假.(1)3=2;(2)54;(3)对任意实数x,x0;(4)有些质数是奇数.【例7】已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)0对于任意x∈R恒成立,并说明理由.(2)若存在一个实数x0,使不等式m-f(x0)0成立,求实数m的取值范围.章末总结重点解读例1解(1)若x∈A∪B,则x∈B是假命题,故其逆否命题为假,逆命题为若x∈B,则x∈A∪B,为真命题.(2)∵0x5,∴-2x-23,∴0≤|x-2|3.原命题为真,故其逆否命题为真.否命题:若x≤0或x≥5,则|x-2|≥3.例如当x=-12,-12-2=523.故否命题为假.(3)原命题:a,b为非零向量,a⊥b⇒a·b=0为真命题.逆命题:若a,b为非零向量,a·b=0⇒a⊥b为真命题.否命题:设a,b为非零向量,a不垂直b⇒a·b≠0也为真.例2解若a=-1,b=12,则Δ=a2-4b0,关于x的方程x2+ax+b=0无实根,故pq.若关于x的方程x2+ax+b=0有两个小于1的正根,不妨设这两个根为x1、x2,且0x1≤x21,则x1+x2=-a,x1x2=b.于是0-a2,0b1,即-2a0,0b1,故q⇒p.所以,p是q的必要不充分条件.例3解设A={x|p}={x|x2-4ax+3a20,a0}={x|3axa,a0}.B={x|q}={x|x2-x-6≤0或x2+2x-80}={x|x-4或x≥-2}.∵綈p是綈q的必要不充分条件,∴q是p的必要不充分条件.∴AB,∴a≤-4a0或3a≥-2a0,解得-23≤a0或a≤-4.故实数a的取值范围为(-∞,-4]∪-23,0.例4解(1)∵x-3=0,有x-3≤0,∴命题为真;(2)∵当x=5时,(x-3)(x-6)≠0,∴命题为假.例5解p:由ax2-x+116a0恒成立得a0Δ=1-4×a×a160,∴a2.q:由2x+11+ax对一切正实数均成立,令t=2x+11,则x=t2-12,∴t1+a·t2-12,∴2(t-1)a(t2-1)对一切t1均成立.∴2a(t+1),∴a2t+1,∴a≥1.∵p或q为真,p且q为假,∴p与q一真一假.若p真q假,a2且a1不存在.若p假q真,则a≤2且a≥1,∴1≤a≤2.故a的取值范围为1≤a≤2.例6解(1)3≠2,真命题;(2)5≤4,假命题;(3)存在一个实数x,x≤0,真命题;(4)所有质数都不是奇数,假命题.例7解(1)不等式m+f(x)0可化为m-f(x),即m-x2+2x-5=-(x-1)2-4.要使m-(x-1)2-4对于任意x∈R恒成立,只需m-4即可.故存在实数m,使不等式m+f(x)0对于任意x∈R恒成立,此时,只需m-4.(2)不等式m-f(x0)0可化为mf(x0),若存在一个实数x0,使不等式mf(x0)成立,只需mf(x)min.又f(x)=(x-1)2+4,∴f(x)min=4,∴m4.所以,所求实数m的取值范围是(4,+∞).