基于多维多规则云模型的上海市普通住宅定价及实证研究鲁东大学樊思维、王文杰、梁绍倩目录1·问题的提出.................................................-1-2·研究思路...................................................-2-3·数据分析...................................................-3-3.1定价体系的选取及假设.....................................-3-3.1.1定价体系的选取.........................................-3-3.1.2若干假设..............................................-4-3.1.3符号的约定............................................-4-3.2基于双对数回归模型的剔除性最小二乘法分析.................-5-3.2.1剔除性最小二乘法模型的引入............................-5-1.双对数回归模型的构建..................................-5-2.剔除性最小二乘法的引入................................-6-3.2.2剔除性最小二乘法模型的定义及变量假设..................-6-3.2.3剔除性最小二乘法模型的构造及本案例中的应用............-7-1.模型的构造............................................-7-2.在本案例中的应用及分析................................-9-3.3双对数回归模型..........................................-11-3.4多维多规则的云预测模型..................................-14-3.4.1云模型引入及概述.....................................-14-1.云模型引入...........................................-14-2.云模型概述...........................................-14-3.4.2多维云的定义及分类...................................-15-1.多维云概述............................................-15-2.多维云的分类.........................................-16-3.4.3多维云模型在本案例中的应用...........................-17-1.定量到定性的转化......................................-17-2.五维多规则逆向云发生器的实现..........................-19-3.五维多规则生成器的实现................................-19-3.5模型对比分析............................................-22-3.5.1模型的对比..........................................-22-3.5.2模型的优点及不足.....................................-23-3.5.3模型的改进及建议......................................-23-4·结论与建议................................................-23-附录.......................................................-24-参考文献...................................................-32-摘要针对于上海房地产定价体系的问题,根据上海房地产的实际现状,我们从供求原理的角度来选取定价指标。在建立预测模型时,考虑到在进行多元回归分析,选取的变量可能具有多重相关性,且变量过多时系统可能会自动排除掉一些具有重要解释意义的量。于是,我们引入了剔除相关性最小二乘法,在排除了多重相关性后,剔除出相关性较大的自变量,进行相关分析。从定量的角度考虑,我们应用了简单的双对数多元回归分析,应用基于剔除相关性最小二乘法选取出的相关性较大的一些自变量,建立双对数模型进行分析。从定性的角度考虑,根据定量与定性相互转化的方法,我们认为房价的产生是随机的,而房价高低的概念是模糊的,依据这些考虑,我们融随机性与模糊性为一体,在运用剔除相关性最小二乘法选取变量的条件下,引入一个多维多规则云模型,使之在定性和定量相结合的基础上,解决房价的预测,并与双对数回归分析结果进行比较,得出更为准确的房价预测模型。模型在构建的过程中,我们运用了SPSS19.0及Matlab2009来实现有关上海房地产定价的实证研究。本文的创新之处有三点:1)在定价指标选取的方面,我们不是根据经验直接选取,首先从供求原理的角度来选取,再根据这些指标的数据特点并结合实际进行筛选;2)在数据分析方面,针对于传统模型筛选变量的不足,引入了剔除性最小二乘法,实证表明基于剔除性最小二乘法的回归模型要优于传统多元回归模型。3)在数据预测方面,基于剔除性最小二乘法的分析,引入了多维多规则云模型进行预测,从定量与定性相互转化的角度,解决预测数据的模糊性与随机性问题,使研究更具有科学性。关键词:多维多规则云模型;剔除相关性的最小二乘法;房地产;定价体系-1-1·问题的提出房地产市场的健康发展与否关系到国家经济发展,同时与老百姓的生活更是息息相关的,房价成为人们越来越关注的焦点。就上海而言,经过二十多年的改革及发展,上海房地产也走出了多年的调整期,呈现持续繁荣的状态。显然房价过高已成了不争的事实,国家也已经开始着手于房价的调控,那么房价的高低到底是有什么决定的呢?虽然房地产业已经得到了足够的重视,但是对于房地产定价模型和方法的研究却没有像房地产市场那样得到应有发展。早期文献选取的宏观经济变量指标比较单一,一般认为从长期看房价与宏观经济步调保持一致,房价是由宏观经济因素决定的。较为经典的有Clapp和Giaccotto(1994)利用简单回归分析,认为宏观经济的变化对于房价有很好的预测能力;Quigley(1999)采用了平衡确定价格的模型,认为宏观经济基本面的相关指标可以解释房价的变化,宏观经济因素对于房地产市场短期的影响不大,但是长期的影响显著;MikiSeko(2003)通过利用计量模型分析出日本各地区的住宅价格和经济基本面有着比较强的相关性,可以预测房地产市场的发展。Dipasquale和Wheaton(2002)采用存量流量模型来分析房地产业发展对国民经济增长具有明显的拉动效应。而且,大多相关研究采用了简单线性回归模型和VAR模型,还有DSGE模型。简单线性回归模型无法避免因素之间的多重相关性,变量太多时可能会剔除重要变量,会使模型在整体上不够精确。VAR模型不依赖具体的经济理论,直接对数据的动力性质进行分析,结构参数的估计是不稳定的。DSGE模型则建立在坚实的经济理论基础之上,从而避免了卢卡斯判断,但是以实际数据不完全匹配。由这些我们发现这些研究均存在着不足的地方,需要进行进一步的讨论。于是我们引入了双对数模型以及云预测模型,特别是云预测模型几乎没有在房地产价格方面应用,本文通过对比双对数模型以及云模型与实际房价的拟合度,尝试拓展云模型的应用范围以及为房价预测提供新的思路。-2-2·研究思路基本概念及房地产文献研究前人研究的不足之处构建定价指标体系结论与建议剔除性最小二乘法分析双对数模型多维多规则云模型-3-3·数据分析3.1定价体系的选取及假设3.1.1定价体系的选取在选取指标时,我们从供求原理出发,从影响供给和需求两个方面来刻画房价。从供给的角度出发,影响供给方的主要因素是成本和对房价的预期,以及宏观因素中的物价指数,因此我们在选用描述供给指标的时候,我们从这些方面入手。土地成本投入是房地产商成本投入的一大部分,因此,我们选用土地交易价格指数来刻画成本的一个方面;投资额的增加也意味着成本的增加,在上海,随着国际化的日益加深,越来越多的外资涉足上海房地产市场,并且其在投资总额中所占的比重越来越大,所以汇率和对房价的预期也是对成本的一个重要影响因素。对于国内的房地产商而言,企业的贷款利率会在一定程度上影响着其贷款额,所以,企业贷款利率也是不得不考虑的因素。为了用来描述投资商或供给商对于房价的预期这一因素,我们选取了房地产景气指数和新建住宅价格指数来从宏观和微观共同刻画。从需求[1]的角度来看,需求由投机需求,投资需求和正常需求构成。影响房屋的正常需求的因素有房价,收入效应,替代效应,以及购房方式。由于房屋的不可替代性,所以我们只考虑收入效应和房价对正常需求的影响,因此我们呢选取了新建住宅价格指数,房价比收入,个人存款利率和贷款利率来刻画正常需求。而投资需求主要体现在出租房市场上,因此出租房价格指数可以用来描述投资需求。投机需求一般受到房价和对房价的预期的影响,因此我们在选取影响投机需求的指标时,可以从这两方面入手,因此,我们选用房地产景气指数和新建住宅价格指数来从宏观和微观共同刻画投机需求。基于以上分析我们选取出下列指标:房地产景气指数、土地交易价格指数,这两个影响房屋投资及成本的因素,并以上一年的数据,作为房地产商对当年房地产业的预期。-4-消费者价格指数(CPI),房价收入比、新建住宅价格指数及房屋租凭价格指数衡量,同时也均选用上一年的数据,作为影响人们或房地产商对当期价格预期的因素,从而影响需求。从宏观经济态势方面来看,选取了人民币汇率、GDP、利率、通货膨胀率来考察;选取企业贷款年利率(即中长期贷款利率一至三年)、个人定期存款利率(即定期存款整存整取(一年))、个人住房商业贷款年利率(一至三年)来衡量利率。3.1.2若干假设本文从房地产商的角度出发,模拟房地产商的定价模型,从供求原理出发,提出以下假设:(1)房地产商是理性的,对于房地产商来说,利润是其定价的出发点,但从长远看,房地产商是理性的,即在定价时,在考虑利润的基础上,充分考虑需求。(2)房屋的地理位置对于房价以及购房人的购买意愿没有影响(3)假设二手房交易市场对普通住房价格没有影响。(4)房地产市场是非理性的,非均衡的,即炒房投机对需求有很大影响。3.1.3符号的约定:普通住宅房价;1:房地产景气指数;2:人民币汇率(年平均汇率);3:居民消费价格指数;4:土地交易价格指数;5:企业贷款年利率(即中长期贷款利率一至三年);6:个人定期存款利率(即定期存款整存整取(一年));-5-7:个人住房商业贷款年利率(一至三年);8:房价收入比;9:新建住宅价格指数;10:房屋租凭价格指数;3.2基于双对数回归模型的剔除性最小二乘法分析3.2.1剔除性最小二乘法模型的引入1.双对数回归模型[2]的构建在处理多变量的问题时,一般采用多元线性回归模型进行分析,在这里考虑使用非线性模型中的双对数模型。多元双对数模型函数01ln()ln()niiiyxu其中,在本案例中0,1,2,…,10是多元线性回归方程的未知参数。由于参数估计的工作是基于样本数据的,由此得到的参数只有参数真值0,1,2,…,10的估计值,记为0,1