1相似三角形应用专题(二)动态几何中的相似三角形例题讲解一:如图,在梯形ABCD中,ADBC∥,3AD,5DC,10BC,梯形的高为4.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t(秒).(1)当MNAB∥时,求t的值;(2)试探究:t为何值时,MNC△为直角三角形.变式练习1-1:如图所示,在ΔABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x。(1)当x为何值时,PQ∥BC?(2)当31ABCBCQSS,求ABCBPQSS的值;(3)ΔAPQ能否与ΔCQB相似?若能,求出AP的长;若不能,请说明理由。DNCMBA2变式练习1-2:如图,已知直线l的函数表达式为483yx,且l与x轴,y轴分别交于AB,两点,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时动点P从A点开始在线段AO上以每秒1个单位长度的速度向点O移动,设点QP,移动的时间为t秒.(1)求出点AB,的坐标;(2)当t为何值时,APQ△与AOB△相似?(3)求出(2)中当APQ△与AOB△相似时,线段PQ所在直线的函数表达式.OPAQByxOPAQByx3图-2ADOBC21MN图-1ADBMN12图-3ADOBC21MNO例题讲解二:在图1至图3中,直线MN与线段AB相交于点O,∠1=∠2=45°.(1)如图1,若AO=OB,请写出AO与BD的数量关系和位置关系;(2)将图1中的MN绕点O顺时针旋转得到图2,其中AO=OB.求证:AC=BD,AC⊥BD;(3)将图2中的OB拉长为AO的k倍得到图3,求ACBD的值.4变式练习2-1:已知在Rt△ABC中,∠ABC=90º,∠A=30º,点P在AC上,且∠MPN=90当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证Rt△PME∽Rt△PNF,得出PN=3PM.(不需证明)当PC=2PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.5变式练习2-2:如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m与n的函数关系式,直接写出自变量n的取值范围.(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图12).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2.(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明,若不成立,请说明理由.Gyx图2OFEDCBAG图1FEDCBAG图1FEDCBAGyx图2OFEDCBA6例题讲解三:如图1,PMNRt△中,90P,PMPN,8MNcm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上.令PMNRt△不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图2),直到C点与N点重合为止.设移动x秒后,矩形ABCD与PMN△重叠部分的面积为y2cm.求y与x之间的函数关系式.ABDPNC(M)22图2图1ABDPNC(M)22图2图17变式练习3-1:如图,在等腰梯形ABCD中,ABDC∥,45A∠,10cmAB,4cmCD.等腰直角三角形PMN的斜边10cmMN,A点与N点重合,MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角三角形PMN沿AB所在直线以1cm/s的速度向右移动,直到点N与点B重合为止.(1)等腰直角三角形PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由形变化为形;(2)设当等腰直角三角形PMN移动(s)x时,等腰直角三角形PMN与等腰梯形ABCD重叠部分的面积为2(cm)y,求y与x之间的函数关系式;(3)当4(s)x时,求等腰直角三角形PMN与等腰梯形ABCD重叠部分的面积.A(N)MPDCBANMPDCBA(N)MPDCBANMPDCB8例题讲解四:如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?9变式练习4-1:如图,在梯形ABCD中,ADBC∥,6cmAD,4cmCD,10cmBCBD,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE.若设运动时间为t(s)(05t).解答下列问题:(1)当t为何值时,PEAB∥?(2)设PEQ△的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使225PEQBCDSS△△?AEDQPBFCAEDQPBFC10变式练习4-2:在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP=,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C时,请直接..写出t的值.ACBPQEDACBPQEDACBPQED