上海交通大学硕士学位论文交流伺服系统在植针机自动化改造中的应用及研究姓名:黄尚青申请学位级别:硕士专业:机械电子工程指导教师:刘利20090201-II-1)2)ASDA-A750WDVP-SVPLCMATLAB/Simulink750WPIDITSEPIDPIDITSEPID-III-THERESEARCHANDAPPLICATIONOFACSERVOSYSTEMININDUSTRIALSEWINGMACHINEABSTRACTAsservodrivesemployingpermanentmagnetsynchronousmotorsarebeingusedforvariouspurposesinconsumerproductsandindustryapplications.Althoughtheirtechnicaladvantagesaregenerallyacknowledged,researchersarebecomingawareoftheircostandareexploringthepossibilityofcostreduction.Especiallyforindustrialsewingmachines,aservocontrolsystemwithlowcostbuthighperformanceisneeded.Theresearchsubjectisbasedonthe‘industrialsewingmachineautomationtransformation’project.Inthispaper,itanalyzethestructureandprinciplesoftheindustrialsewingmachine,primarilythefeatureandprinciplesofthetwo-axisfeeding.Followingtheprinciplesofsafety,reliability,conveniencesandadvancement,anoveralldesignoftheautomationsystemiscombinedwiththefeatureofthemachine.Thetransmissionandlocatingmechanismaredesigned.TheASDA-A750Wservomotoranddriverarechosenforthedesignoftheservosystem.ThefunctionofthesystemisimplementedbyDVP-SVPLC.Secondly,thepaperdeducedtheequationrelatedtoPMSM,andthenbuiltthemathematicalmodelofPMSM.Themodelofthecurrentloop,speedloopandpositionloopwerebuiltbasedonVectorControlforPMSMbyMATLAB/Simulink.ThePIDparameterofASDA-A750Wservodriverweretunedbytheprojecttuningmethod,furthermore,itanalyzedthesystemperformance.Therunningresultrevealedthatthismethodcouldachievethebasicdemandofthesystem,ontheotherway,itrevealedthefault,suchaslargeamountofovershootandtoolongresponsetime.Thirdly,thepaperanalyzedtheperformanceofthreekindsoftheoptimalalgorithmbasedonQuadraticForm.TheACservosysteminthisprojectwasoptimizedbythreetypicaloptimalalgorithmbasedonQuadraticForm.,whichwerecalledISTE,ITSEandITAE.TherunningresultsindicatedthatITSEalgorithmwasthemostadaptabletooptimizethePIDparametersoftheACservosystemofPMSM.BecauseITSEdonotdependonthechooseofinitialvalueandmakebettersystemperformance.Finally,inthispaper,thedifferentialregulationisintroducedtoconstitutethehighperformancespeedloopofPMSMandrealizetheperfectfollowingcapacityofhighspeedvariation.Themathematicalmodelofthespeedloopofpermanentmagnetsynchronousmotor(PMSM)wasconstructed.ThePIparametersweretunedbythemethodwhichiscommonlyusedinengineeringpractice,andthenthecapabilityofsystemwasanalyzed.ThePIDparametersweretunedbyanewoptimizationtuningmethodbaseonphasemargin.Thetuningformulawasderivedfromtheconceptofphasemargin.Furthermore,quadraticoptimizationwasusedforPIDparameterstuning,whichwas-IV-constrainedbythetuningformula.ComparedwiththetraditionalPMmethodderivedfromgeometricalgraph,itissimpleandpellucid.KeyWords:industriallockstitchsewingmachinepermanentmagnetACservosystemPIDtuningoptimization-I--1-1.11.21.2.1,1-31-1-2-1.2.21-11-1Figure1-1Wholestructureofindustrialsewingmachine1-11-11-11-11-12.1.12.1.21-2-3-1-2Figure1-2Schematicrepresentationofsewingmachine’sproduct1-3Figure1-3Schematicrepresentationofsewingmachine’sproduct-4-0.01mm±1.3[1]PWM(PWM)70(1)(2)(3)70[2]()-5-[3][4][5]DC(BDCM)(PMSM)(BDCM)[3](PMSM)()0.05~6kW,DRMFSHCG8MINASMSMA0.03~5kW18MDMAMGMAMFMA0.75~4.5kW23MHMA0.5~5kW7IFTS898GettysM600A600A700Inland(AEG)BHT11002200330017SmCo8FAGACSMCSMGCSMZCSMDCSMFCSMHCSMNCSMX815W~5kW(SM)(CC)(BL)-6-(BL)(S)KollmorgenIndustrialDrive(Goldline)[6][7][8](IntelligentControl)PMSMYJS(PC)PMSMPMSMPMSMPMSMPMSMPMSM1.4PIDPIDPID[10]-7-PID84.5%PID6.8%1.6%6.6%(AI)0.6%[11]PID[12][13]PID90%PIDEnder30%20%PIDHagglundAstormPIDPProcessr+−abyIDeu+++1-4PIDFigure1-4StructureofPIDcontrolsystem1.4.1PIDPID(Proportional)(Integral)(Derviatvi)ePID1-4PID()et()utPID()I()P()D1.4.2PID1-4PID()()()()01tpdidetutKetetdtTTdt=++∫(1-1)-8-()()()11epdiUsGsKTsEsTs==++(1-2)pK-iT-dT-(l-2)PIDpKiTdTPID(DCS)PID50PIDPIDPIDPDPIDPIDPIDPIDPIPIDPIDPIDPIDPIDPIDPID[14](IntelligentControl)PIDPID[15]PIDPIDPIDPIDPIDPIDPIDPIDPIDPID1.5-9-PLCPLCPIDMATLAB750WITSEPMPMPIDPIDITSEPIDPIPIDPLC750WMATLAB/SimulinkITSE-10-PMPM-11-2.12.1.12-12-1Figure2-1SchemeofRatchet2-211122-2Y,-12-2-2Figure2-2Schemeoftwo-axisfeed2.1.22-3XX2-3Figure2-3SchemeofX-axisfeed2.20.1mm±-13-2-42-5PLCPLCPLCRS-232PLCRS-2322-4Figure2-4Schemeofautomationsystem2-5-14-Figure2-5Physicalstructureofautomationsystem2-62-6Figure2-6Assemebleofmotor’sbraces2-7-15-2-7Figure2-7Schemeoftwo-axisautomationfeed2.32.3.157360576.3161/33()2.10518.9482206171911422-122114114/6=1922838228+4=23238+4=42228-5=22338-5=3320202.3.21)T2Kg*462mm100kg*cm10N*m330N*m30÷6=5N*m750W-16-7.16N*m2)125s5120.417s1/40.1s0.120srad/5.31.0*180*20==πω(2-1)0=10=35rad/sP0*5*35(1.5~2.5)(1.5~2.5)0.286~0.47710201020*90%TPKWωη≈==(2-2)750W3)rpmn20052/60*60==πω(2-3)3000rpm4)7.829*103g/m30.0165kg/m20.001kg/m20.008kg/m20.0012kg/m2+0.0267kg/m2J=JL/i2=0.0267/36=7.4*10-4kg/m2(2-4)2.3*10-5kg/m2J0=7.4*10-4+2.3*10-5=7.6*10-4kg/m2(2-5)1.511.4*10-4kg/m21.08*10-4kg/m210.555)ASMT-L750W2-22-2750w2.39N.m7.16N.m3000rpm5000rpm0.6ms4.8ms-17-1.08E-4Kg.m20.5N.m/A1.3Ohm6.3mH52.2E-32.42.4.1750W220V15V5V3.3V24VCN1/CN2CN3-18-MCN2CN1GATEDRIVERCN3ADADDAPWMENCRST1L2LPEPDCUVWPE