初三数学-二次函数的大题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

72xB(0,4)A(6,0)EFxyO二次函数与四边形一.二次函数与四边形的形状例1.(浙江义乌市)如图,抛物线223yxx与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.例1.解:(1)令y=0,解得11x或23x∴A(-1,0)B(3,0);将C点的横坐标x=2代入223yxx得y=-3,∴C(2,-3)∴直线AC的函数解析式是y=-x-1(2)设P点的横坐标为x(-1≤x≤2)则P、E的坐标分别为:P(x,-x-1),E(2(,23)xxx∵P点在E点的上方,PE=22(1)(23)2xxxxx∴当12x时,PE的最大值=94(3)存在4个这样的点F,分别是1234(1,0),(3,0),(470),(47,0)FFFF,练习1.(河南省实验区)23.如图,对称轴为直线72x的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点EA72xB(0,4)A(6,0)EFxyO的坐标;若不存在,请说明理由.练习1.解:(1)由抛物线的对称轴是72x,可设解析式为27()2yaxk.把A、B两点坐标代入上式,得227(6)0,27(0)4.2akak解之,得225,.36ak故抛物线解析式为22725()326yx,顶点为725(,).26(2)∵点(,)Exy在抛物线上,位于第四象限,且坐标适合22725()326yx,∴y0,即-y0,-y表示点E到OA的距离.∵OA是OEAF的对角线,∴2172264()2522OAESSOAyy.因为抛物线与x轴的两个交点是(1,0)的(6,0),所以,自变量x的取值范围是1<x<6.①根据题意,当S=24时,即274()25242x.化简,得271().24x解之,得123,4.xx故所求的点E有两个,分别为E1(3,-4),E2(4,-4).点E1(3,-4)满足OE=AE,所以OEAF是菱形;点E2(4,-4)不满足OE=AE,所以OEAF不是菱形.②当OA⊥EF,且OA=EF时,OEAF是正方形,此时点E的坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E,使OEAF为正方形54321123D554321ACEMBC1O2l1lxy练习2.(四川省德阳市)25.如图,已知与x轴交于点(10)A,和(50)B,的抛物线1l的顶点为(34)C,,抛物线2l与1l关于x轴对称,顶点为C.(1)求抛物线2l的函数关系式;(2)已知原点O,定点(04)D,,2l上的点P与1l上的点P始终关于x轴对称,则当点P运动到何处时,以点DOPP,,,为顶点的四边形是平行四边形?(3)在2l上是否存在点M,使ABM△是以AB为斜边且一个角为30的直角三角形?若存,求出点M的坐标;若不存在,说明理由.练习2.解:(1)由题意知点C的坐标为(34),.设2l的函数关系式为2(3)4yax.又点(10)A,在抛物线2(3)4yax上,2(13)40a,解得1a.抛物线2l的函数关系式为2(3)4yx(或265yxx).(2)P与P始终关于x轴对称,PP与y轴平行.设点P的横坐标为m,则其纵坐标为265mm,4OD,22654mm,即2652mm.当2652mm时,解得36m.当2652mm时,解得32m.当点P运动到(362),或(362),或(322),或(322),时,PPOD∥,以点DOPP,,,为顶点的四边形是平行四边形.(3)满足条件的点M不存在.理由如下:若存在满足条件的点M在2l上,则90AMB,30BAM(或30ABM),114222BMAB.过点M作MEAB于点E,可得30BMEBAM.112122EBBM,3EM,4OE.543211234554321AEBC1O2l1lxy点M的坐标为(43),.但是,当4x时,246451624533y.不存在这样的点M构成满足条件的直角三角形.练习3.(山西卷)如图,已知抛物线1C与坐标轴的交点依次是(40)A,,(20)B,,(08)E,.(1)求抛物线1C关于原点对称的抛物线2C的解析式;(2)设抛物线1C的顶点为M,抛物线2C与x轴分别交于CD,两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.练习3.[解](1)点(40)A,,点(20)B,,点(08)E,关于原点的对称点分别为(40)D,,(20)C,,(08)F,.设抛物线2C的解析式是2(0)yaxbxca,则16404208abcabcc,,.解得168abc,,.所以所求抛物线的解析式是268yxx.(2)由(1)可计算得点(31)(31)MN,,,.过点N作NHAD,垂足为H.当运动到时刻t时,282ADODt,12NHt.根据中心对称的性质OAODOMON,,所以四边形MDNA是平行四边形.所以2ADNSS△.所以,四边形MDNA的面积2(82)(12)4148Stttt.因为运动至点A与点D重合为止,据题意可知04t≤.所以,所求关系式是24148Stt,t的取值范围是04t≤.(3)781444St,(04t≤).所以74t时,S有最大值814.提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA能形成矩形.由(2)知四边形MDNA是平行四边形,对角线是ADMN,,所以当ADMN时四边形MDNA是矩形.所以ODON.所以2222ODONOHNH.所以22420tt.解之得126262tt,(舍).所以在运动过程中四边形MDNA可以形成矩形,此时62t.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功