Lecture10Total69pages1RecurrentNeuralNetworksLecture10Total69pages2ClassificationofNNsFeedforwardNNsRecurrentNNsNeuralNetworksLecture10Total69pages33视网膜信息处理的基本系统视网膜分3层神经细胞(自下而上):外层、中间层、最后层光信息自光感受器经双极细胞传至神经节细胞,神经节细胞的轴突汇聚成视神经离开眼球。水平细胞和无长突细胞通过侧向联系调节双极细胞和神经节细胞的反应。Lecture10Total69pages4FeedforwardNNs神经节细胞层内核层外核层•三层神经网络:神经节细胞层-内核层-外核层•每层内各神经元之间无连接•前一层神经元计算完后传递给下一层神经元进行计算Lecture10Total69pages5FeedforwardNNs1x21w13w12w11wRx2x22w23w1Rw2Rw3Rw12f11sf11sn12n11f11n22sf22sn22f22n21f21n31f31n32f32n33sf33sn11sa12a11a22sa22a21a22sa22a21aWxfaLecture10Total69pages6ContainfeedbackamongneuronsRecurrentNNsLecture10Total69pages7RecurrentNNsLecture10Total69pages8RecurrentNNsHowtoderivemathmodelsofRNNs?Lecture10Total69pages9RecurrentNNs1f1n2n2fLecture10Total69pages10RecurrentNNs1f1n2n2f)(1kx)(2kx)1(2kx)1(1kx)(2kx)(1kxLecture10Total69pages11RecurrentNNs1f1n2n2f)(1kx)(2kx)1(2kx)1(1kx)(2kx)(1kx22w21w12w11wLecture10Total69pages12RecurrentNNs1f1111122()()nwxkwxk)()(2221212kxwkxwn2f)(1kx)(2kx)1(2kx)1(1kx)(2kx)(1kx22w21w12w11wLecture10Total69pages13RecurrentNNs1f)()(121111kxwkxwn)()(2221212kxwkxwn2f)(1kx)(2kx))()(()1(21211111kxwkxwfkx)(2kx)(1kx22w21w12w11w)()()1(22212122kxwkxwfkxLecture10Total69pages14RecurrentNNs)()()1()()()1(2221212221211111kxwkxwfkxkxwkxwfkx1f1n2n2f)(1kx)(2kx)1(2kx)1(1kx)(2kx)(1kx22w21w12w11wLecture10Total69pages15RecurrentNNs1f1n2n2f)(1kx)(2kx)1(2kx)1(1kx)(2kx)(1kx22w21w12w11w)()()1()()()1(2221212221211111kxwkxwfkxkxwkxwfkxnjjijiikxwfkx1)()1(Lecture10Total69pages16RecurrentNNs)()1(kwxfkxLecture10Total69pages17RecurrentNNsbbbbLecture10Total69pages18DiscreteTimeRNNsbkwxfkx)()1(Lecture10Total69pages19DiscreteTimeRNNsbkwxfkx)()1(Networkcomputing?0x1x6x3x5x2x7x4x8xxLecture10Total69pages20DiscreteTimeRNNsbkwxfkx)()1(Networkcomputing0x1x6x3x5x2x7x4x8xxRNNInputOutputx0xLecture10Total69pages21Computing:DiscreteorContinuous?Lecture10Total69pages22DiscretevsContinuousDiscretetimecomputingContinuoustimecomputingLecture10Total69pages23DiscretevsContinuousContinuoustimecomputingHowtoderivecontinuoustimecomputingmathmodelsofRNNs?Lecture10Total69pages24FromDiscreteComputingtoContinuousComputingChangingtimestepsLecture10Total69pages25btwxftxtxtx)()()()1(btwxftx)()1(FromDiscreteComputingtoContinuousComputingLecture10Total69pages26btwxftxtxtx)()(1)()1(btwxftxtxtx)()()()1(FromDiscreteComputingtoContinuousComputingLecture10Total69pages27btwxftxtxtx)()()()(btwxftxtxtx)()(1)()1(FromDiscreteComputingtoContinuousComputingLecture10Total69pages28btwxftxtxtx)()()()(btwxftxtxtx)()()()(FromDiscreteComputingtoContinuousComputingLecture10Total69pages29btwxftxtxtx)()()()(btwxftxdttdx)()()(0FromDiscreteComputingtoContinuousComputingLecture10Total69pages30btwxftxdttdx)()()(ContinuousComputingRNNsLecture10Total69pages31RecurrentNNsttptagdttda),(),()(RNNmodel:NetworkstateNetworkinputNetworktimeLecture10Total69pages32RecurrentNNsWhat’stheoutputofaRNN?NetworkstateNetworkinputNetworktimettptagdttda),(),()(Networkoutputtata)(Lecture10Total69pages33ConvergenceofRNNsNetworkstatettptagdttda),(),()(tata)(Converge?0allfor0),(,tttpagEquilibriumpoint:Lecture10Total69pages34Trajectoriesttptagdttda),(),()())0(,(ytrajectoraisthere),0(conditioninitialanygivenataanR0,00,spaceesTrajectoriatataLecture10Total69pages35Trajectoriesttptagdttda),(),()(0anyfor,,then,If2121tataataaaLecture10Total69pages36Trajectoriesttptagdttda),(),()(0anyfor,,then,If2121tataataaaLecture10Total69pages37ASimpleExampleptadttda)()(ttepeata1)0()(Lecture10Total69pages38EquilibriumPointsttptagdttda),(),()(0allfor0),(,tttpagEquilibriumpoint:Lecture10Total69pages39EquilibriumPointsptadttda)()(ttepeata1)0()(tappaLecture10Total69pages40ConvergenceofRNNsttptagdttda),(),()(tata)(AttractorsLecture10Total69pages41ConvergenceofRNNsttptagdttda),(),()(tata)(DoeseachtrajectoryofaRNNconvergetoanequilibrium?Methods:1.Solvingdifferentialequationdirectly;2.Energymethod.Lecture10Total69pages42MethodOneSolvingDifferentialEquationsLecture10Total69pages43ASimpleExampleptadttda)()(ttepeata1)0()(tapLecture10Total69pages44LinearRNNsptWatadttda)()()(tata)(Lecture10Total69pages45LinearRNNs2122212111)()()()()()(ptatataptatatatata)(Lecture10Total69pages46://hebb.mit.edu/people/seung/index.htmlLecture10Total69pages48LinearRNNsH.S.Seung,Howthebrainkeepstheeyesstill,Proc.Natl.Acad.Sci.USA,vol.93,pp.13339-13344,1996ysensitivitpositionthe-----0gazecentralatratefiringthe-----ratefiringthe-----00iiiiiikEvvEkvvLecture10Total69pages49HowthebrainkeepstheeyesstillH.S.Seung,Howthebrainkeepstheeyesstill,Proc.Natl.Acad.Sci.USA,vol.93,pp.13339-13344,1996ABSTRACTThebraincanholdtheeyesst