中小学课件1.理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证明;2.进一步培养学生观察问题、分析问题和解决问题的能力;3.通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱.中小学课件问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶,它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?中小学课件想一想:将一个圆沿着任一条直径对折,两侧半圆会有什么关系?【解析】圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以两侧半圆折叠后重叠.中小学课件观察右图,有什么等量关系?AO=BO=CO=DO,弧AD=弧BC,弧AD=弧BD,AE=BEAO=BO=CO=DO,弧AD=弧BC=弧AC=弧BDOCDAB已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.求证:AE=BE,弧AC=弧BC,弧AD=弧BD.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.垂径定理证明猜想中小学课件判断下列图形,能否使用垂径定理?OCDBAOCDBAOCDBAOCDE【解析】定理中两个条件(直径垂直于弦)缺一不可,故前三个图均不能,仅第四个图可以!定理辨析:如图,已知在圆O中,弦AB的长为8㎝,圆心O到AB的距离为3㎝,求圆O的半径。EOAB例题【解析】根据题意得,AE=4cmOE⊥ABOE=3cm在Rt△OEA中,根据勾股定理得:AO2=OE2+AE2=32+42=25AO=5cm:AC、BD有什么关系?变式2:AC=BD依然成立吗?OABCDOABCDFE变式3:EA=____,EC=_____.FDFBOABCD变式4:______AC=BD.OA=OBOABCD变式5:______AC=BD.归纳:OC=OD中小学课件如图,P为⊙O的弦BA延长线上一点,PA=AB=2,PO=5,求⊙O的半径.MPBO关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线.跟踪训练【解析】提示作OM垂直于PB,连接OA.答案:A17中小学课件画图叙述垂径定理,并说出定理的题设和结论.题设结论①直线CD经过圆心O②直线CD垂直弦AB③直线CD平分弦AB④直线CD平分弧ACB⑤直线CD平分弧AB想一想:如果将题设和结论中的5个条件适当互换,情况会怎样?OBCDAE①③②④⑤②③①④⑤①④②③⑤②④①③⑤①②⑤①②④④⑤①②③③④③⑤中小学课件(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦并且平分弦所对的另一条弧.OBCDAE推论1中小学课件如图,CD为⊙O的直径,AB⊥CD,EF⊥CD,你能得到什么结论?弧AE=弧BF圆的两条平行弦所夹的弧相等.FOBAECD推论2(湖州·中考)如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A.AE=OEB.CE=DE12CEC.OE=D.∠AOC=60°B1.(绍兴·中考)已知⊙O的半径为5,弦AB的弦心距为3,则AB的长是()A.3B.4C.6D.8D(安徽·中考)如图,⊙O过点B、C。圆心O在等腰直角△ABC的内部,∠BAC=900,OA=1,BC=6,则⊙O的半径为()A.B.C.D.【解析】选D.延长AO交BC于点D,连接OB,根据对称性知AO⊥BC,则BD=DC=3.又△ABC为等腰直角三角形,∠BAC=90°,则AD==3,∴OD=3-1=2,∴OB=1032231312BC222313.中小学课件【解析】如图所示,连接OB,则OB=5,OD=4,利用勾股定理求得BD=3,因为OC⊥AB于点D,所以AD=BD=3,所以AB=6.答案:64.(毕节·中考)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l,则弦AB的长是.、已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.求证:AC=BD.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.AE-CE=BE-DE.所以,AC=BDE.ACDBO中小学课件通过本课时的学习,需要我们:1.理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证明;2.掌握垂径定理的推论,明确理解“知二得三”的意义.利用垂径定理及其推论解决相应的数学问题.中小学课件