§2.6Hermite插值不少实际问题不但要求插值函数在节点上与原来的函数相等(满足插值条件),而且还要求在节点上的各阶导数值也相等,满足这种要求的插值多项式,称为Hermite插值多项式记为H(x),本节主要讨论已知节点的函数值和一阶导数的情形。设已知函数y=f(x)在n+1个互异节点x0,x1,…,xn上的函数值yi=f(xi)(i=0,1,2,…n)和导数值yi=f(xi)(i=0,1,2,…n),要求一个不超过2n+1次的多项式H(x),使其满足:),,2,1,0()()(niyxHyxHiiii这样的H(x)称为Hermite插值多项式。并估计误差。且使的多项式求不超过三次已知为互异节点,设引例,)(),2,1,0()()(,)2,1,0()(,,:11210yxHiyxHxHiyxfxxxiiii11221100112211003)()()()()()()()()(yxhyxhyxhyxhyxlyxlyxlyxlxH可设:按插值基函数的方法,:都是三次多项式且满足其中)(),(),(),(1210xhxhxhxh与Lagrange分析完全类似1)(ˆ,0)(ˆ,0)(ˆ,0)(ˆ0)(,1)(,0)(,0)(0)(,0)(,1)(,0)(0)(,0)(,0)(,1)(11211101122212021121110110201000xhxhxhxhxhxhxhxhxhxhxhxhxhxhxhxh0)(,0)()(10100xhxhxh:首先求的一阶零点是而的二阶零点是)(,)(0201xhxxhx)()()(2210xxxxCxh可设)()(11)(2021000xxxxCxh而由)()()()()(202102210xxxxxxxxxh于是求出212022102))(())(()(xxxxxxxxxh同理可求:分别为其一阶零点:对201,)(xxxh))()(()(201xxxxbaxxh可设0)(1)(1111xhxh由0))(())(())((1))()((011211210121011xxbaxxxbaxxxxxaxxxxbax22120111202101221201120)()(2)())((1,)()(2)(xxxxxxxxxxxxbxxxxxxxa22120120202110211201)()())(()223)2(()(xxxxxxxxxxxxxxxxxxxxh))()(()(ˆ,,,)(ˆ21012101xxxxxxCxhxxxxh可设:为一阶零点:对))((11)(ˆ210111xxxxCxh利用))()(())((1)(ˆ21021011xxxxxxxxxxxh求。满足前面条件,即为所法求出的中,可以检查按上述方代入将)()()(ˆ),(),(),(331210xHxHxhxhxhxh误差估计:)()()(33xHxfxR)())()(()()()(221033xxxxxxxλxHxfxR与Lagrange分析完全类似为确定(x),作辅助函数:)())()(()()(22103xtxtxtxtRt∵当t=x时,使(x)=0∴t=x,x0,x2为(t)的一重零点,t=x1为二重零点。因此(t)共五重零点,反复使用罗尔中值定理(对重零点也适合)可得到:存在x,使(4)(x)=0,即:0)(!4)()()()4(3)4()4(xHfxxx由于H(t)是t的三次多项式,∴H(4)(x)=0)(!41)()4(xfx因此可得)())((!4)()()()(2210)4(3xxxxxxfxHxfxRx因而有:注意到x1是的二次零点,x0,x2为其一次零点,所以:)(3xHniiiiinyxhyxhxH012))(ˆ)(()(满足下面条件:和其中)(hˆ)(xxhii次的多项式;都是不超过和12)(hˆ)()1(nxxhii对hi(x):x=xj(ji)为其二重零点,故应含有因式(xxj)2(ji),因此可以设为221212120)()()()())(()(niiixxxxxxxxxxbxaxh这样来确定a,b较麻烦,引入li(x)iiniinnnnnyxHyxHxyyyyyyxxx)(,)()(H,,,,,,,,,,,121212101010满足求导数值为处的值为一般的,已知),,2,1,0(,10)(ˆ,0)(ˆnjjijixhxhjiji2(),,2,1,0(0)(,10)()njxhjijixhjiji0)(1)(iiiixhxh.)()()()(,,)()()(112插值基函数为为待定系数其中Lagrangexxxxxlbaxlxxbaxhininiiii)还应满足:xhi(0)(2)()(2))(()()(1)()(22iiiiiiiiiiiiiiiixlabxlxlxxbaxblxhaxalxh)(21iixlaba可求出),,2,1,0()())()(21()(2nixlxlxxxhiiiii对:由于x=xj(ji)为其二重零点,xi为一重零点,故可设:)(hˆxi)()()(ˆ2xlxxCxhiii1)()(ˆ1)(ˆ2CxClxhxhiiiiii利用),2,1,0()()()(ˆ2nixlxxxhiiiniiiiiiiiiniiiiinyxlxxyxlxlxxyxhyxhxH022012))()()())()(21(())(ˆ)(()(特别地,当n=1时,有:2010112101002010101121010100)()(ˆ)()(ˆ21)(21)(xxxxxxxhxxxxxxxhxxxxxxxxxhxxxxxxxxxh,,110011003)(ˆ)(ˆ)()()(:yxhyxhyxhyxhxHHermite插值多项式为因此两个节点的三次)())()(21()(2xlxlxxxhiiiii),2,1,0()()()(ˆ2nixlxxxhiii和引例类似,可导出Hermite插值的误差估计。定理设x0,x1,…,xn为区间[a,b]上的互异节点,为f(x)的过这组节点的2n+1次Hermite插值多项式。若f(x)在[a,b]上2n+2连续可导,则对x[a,b]插值余项为:)(H12nx),()()!22()()()()(21)22(12baxnfxHxfxRnnn特别地,n=1的三次Hermite插值余项为:)()(!4)()(2120)4(xxxxfxR于是上式0这表明Hermite插值多项式是唯一的。证明(反证法)假设另有一个H(x)是满足相同插值要求的2n+1次Hermite多项式)()()(xxHxH推论1:不超过2n+1次的多项式在任意n+1个互异节点上的Hermite插值多项式就是其自身。对于推论2,事实上,可令f(x)=1,f(xi)=0,(i=0,1,…,n),显然niixhxH0)()(1)(20niixh:推论满足这组插值条件,即得结论。重根。次多项式,却有是不超过因为2212)(nnx设x0,x1,…,xn为区间[a,b]上互异节点,f(x)在(a,b)上2n+2阶导数存在,则上述Hermite插值多项式是唯一的。定理5.3Quiz:给定xi=i+1,i=0,1,2,3,4,5.下面哪个是h2(x)的图像?x0--10.5123456yxy0---10.5123456斜率=1求Hermite多项式的基本步骤:写出相应于条件的hi(x)、hi(x)的组合形式;对每一个hi(x)、hi(x)找出尽可能多的条件给出的根;根据多项式的总阶数和根的个数写出表达式;根据尚未利用的条件解出表达式中的待定系数;最后完整写出H(x)。例按下表求Hermite插值多项式:221214212222221112111110000)3(4)(ˆ)()()()4()2)(1()(ˆ,)1(4)()2()2())1(1()(1,10)1(,1)1()2())1(()(,0)0()2()0(:)()(ˆ),(,0)3()1,0,(10)(ˆ)1,0,2,1,0(0)(ˆ)2,1,0,1,0(0)()2,1,0,(10)()2(;4)1,0)((ˆ),2,1,0)(()1(xxxhxhxhxHHermitexxxxhxxxhxxxxxxhbahhxxxbaxhhhhxhxhxhyyjiijijxhijxhijxhjiijijxhixhixhjijijijiii插值多项式为:因此所求类似可求代入可设对不必求次多项式都是12101010iiiyyx解法一:这里有5个条件,所以插值多项式不超过4次,用构造插值基函数hi(x)(i=0,1,2)和(i=0,1)的方法,它们分别应满足:)(ˆxhi解法2:∵x=0为二阶零点,故可设插值多项式为)()(22cbxaxxxH代入条件:4/9234112341481611)1(1)2(1)1(cbacbacbacbaHHH所求四次Hermite插值多项式为:22)3(4)(xxxH12101010iiiyyx解法3:还可直接设五次方程求解例1)(10)0()21(1)()1()1(2)(0],,[,1],[],[0)0()0()()(,))()(()())()(())(](,,[)](,[)()(1,0,1:333223232102110311321022101021001003210xxHHxxxHxxxxHxxxfxxfxxffHxfxHxxxxxxxNxxxxxxxxxxxxxfxxxxfxfxHNewtonxxxxi因此代入其中确定即可由为待定参数插值。可设:还可以利用为等距节点,三点记为解Hermite插值举例(续)设:已知函数f(x)的如下值:f(-1)=-2,f(0)=-1,f(1)=0,f(0)=0,求不超过3次的Hermite插值多项式)(3xH