全等三角形证明经典题(含答案)1.已知:AB=4,AC=2,D是BC中点,111749AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=22.已知:D是AB中点,∠ACB=90°,求证:12CDAB延长CD与P,使D为CP中点。连接AP,BP∵DP=DC,DA=DB∴ACBP为平行四边形又∠ACB=90∴平行四边形ACBP为矩形∴AB=CP=1/2AB3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。∵∠ABC=∠AED。∴∠ABE=∠AEB。∴AB=AE。在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴三角形ABF和三角形ADBCDABCABCDEF21AEF全等。∴∠BAF=∠EAF(∠1=∠2)。4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD=∠EFD又EF∥AB∴∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD(SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE7.如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。在BC上截取BF=AB,连接EF∵BE平分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB//CD∴∠A+∠D=180º∵∠BFE+∠CFE=180º∴∠D=∠CFE又∵∠DCE=∠FCECE平分∠BCDCE=CE∴⊿DCE≌⊿FCE(AAS)∴CD=CFBACDF21EA∴BC=BF+CF=AB+CD8.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠CAB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,∵∠EAB=∠BDE,∴∠AED=∠ABD,∴四边形ABDE是平行四边形。∴得:AE=BD,∵AF=CD,EF=BC,∴三角形AEF全等于三角形DBC,∴∠F=∠C。9.已知:AB=CD,∠A=∠D,求证:∠B=∠C证明:设线段AB,CD所在的直线交于E,(当ADBC时,E点是射线BA,CD的交点,当ADBC时,E点是射线AB,DC的交点)。则:△AED是等腰三角形。∴AE=DE而AB=CD∴BE=CE(等量加等量,或等量减等量)∴△BEC是等腰三角形∴∠B=∠C.10.P是∠BAC平分线AD上一点,ACAB,求证:PC-PBAC-AB在AC上取点E,使AE=AB。∵AE=ABAP=AP∠EAP=∠BAE,∴△EAP≌△BAP∴PE=PB。PC<EC+PE∴PC<(AC-AE)+PB∴PC-PB<AC-AB。11.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BEABCDDCBAFEPDACB证明:在AC上取一点D,使得角DBC=角C∵∠ABC=3∠C∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;∵∠ADB=∠C+∠DBC=2∠C;∴AB=AD∴AC–AB=AC-AD=CD=BD在等腰三角形ABD中,AE是角BAD的角平分线,∴AE垂直BD∵BE⊥AE∴点E一定在直线BD上,在等腰三角形ABD中,AB=AD,AE垂直BD∴点E也是BD的中点∴BD=2BE∵BD=CD=AC-AB∴AC-AB=2BE12.已知,E是AB中点,AF=BD,BD=5,AC=7,求DC∵作AG∥BD交DE延长线于G∴AGE全等BDE∴AG=BD=5∴AGF∽CDFAF=AG=5∴DC=CF=213.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.解:延长AD至BC于点E,∵BD=DC∴△BDC是等腰三角形∴∠DBC=∠DCB又∵∠1=∠2∴∠DBC+∠1=∠DCB+∠2即∠ABC=∠ACB∴△ABC是等腰三角形∴AB=AC在△ABD和△ACD中AB=AC∠1=∠2BD=DC∴△ABD和△ACD是全等三角形(边角边)∴∠BAD=∠CAD∴AE是△ABC的中垂线∴AE⊥BC∴AD⊥BC14.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA证明:∵OM平分∠POQ∴∠POM=∠QOM∵MA⊥OP,MB⊥OQ∴∠MAO=∠MBO=90∵OM=OM∴△AOM≌△BOM(AAS)∴OA=OB∵ON=ON∴△AON≌△BON(SAS)∴∠OAB=∠OBA,∠ONA=∠ONB∵∠ONA+∠ONB=180∴∠ONA=∠ONB=90∴OM⊥AB15.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.做BE的延长线,与AP相交于F点,∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线∴三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,FAEDCBPEDCBA∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC16.如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。FEDCBA证明:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵AD=BC,∠D=∠C,DE=CF∴△AED≌△BFC(SAS)17.如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。求证:AM是△ABC的中线。MFECBA证明:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴BM=CM∴AM是△ABC的中线.18.(10分)如图:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。DCBA∵△ABD和△BCD的三条边都相等∴△ABD=△BCD∴∠ADB=∠CD∴∠ADB=∠CDB=90°∴BD⊥AC19.(10分)AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CFFDCBA在△ABD与△ACD中AB=ACBD=DCAD=AD△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD∴BF=FC20.(12分)如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。FEDCBA∵AB=DCAE=DF,CE=FBCE+EF=EF+FB∴△ABE=△CDF∵∠DCB=∠ABFAB=DCBF=CE△ABF=△CDE∴AF=DE21.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上.证明:连接EF∵AB∥CD∴∠B=∠C∵M是BC中点∴BM=CM在△BEM和△CFM中BE=CF∠B=∠CBM=CM∴△BEM≌△CFM(SAS)∴CF=BE22.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.∵AF=CE,FE=EF.∴AE=CF.∵DF//BE,∴∠AEB=∠CFD(两直线平行,内错角相等)∵BE=DF∴:△ABE≌△CDF(SAS)23.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证:AE=AF。连接BD;∵AB=ADBC=D∴∠ADB=∠ABD∠CDB=∠ABD;两角相加,∠ADC=∠ABC;∵BC=DCE\F是中点∴DE=BF;∵AB=ADDE=BF∠ADC=∠ABC∴AE=AF。24.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证:∠5=∠6.DBCcAFE654321EDCBA证明:在△ADC,△ABC中∵AC=AC,∠BAC=∠DAC,∠BCA=∠DCA∴△ADC≌△ABC(两角加一边)∵AB=AD,BC=CD在△DEC与△BEC中∠BCA=∠DCA,CE=CE,BC=CD∴△DEC≌△BEC(两边夹一角)∴∠DEC=∠BEC25.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.∵AD=DF∴AC=DF∵AB//DE∴∠A=∠EDF又∵BC//EF∴∠F=∠BCA∴△ABC≌△DEF(ASA)26.已知:如图,AB=AC,BDAC,CEAB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.证明:∵BD⊥AC∴∠BDC=90°∵CE⊥AB∴∠BEC=90°∴∠BDC=∠BEC=90°∵AB=AC∴∠DCB=∠EBC∴BC=BC∴Rt△BDC≌Rt△BEC(AAS)∴BE=CD27.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。求证:DE=DF.证明:∵AD是∠BAC的平分线∴∠EAD=∠FAD∵DE⊥AB,DF⊥AC∴∠BFD=∠CFD=90°∴∠AED与∠AFD=90°在△AED与△AFD中∠EAD=∠FADAD=AD∠AED=∠AFD∴△AED≌△AFD(AAS)∴AE=AF在△AEO与△AFO中∠EAO=∠FAOAO=AOAE=AF∴△AEO≌△AFO(SAS)∴∠AOE=∠AOF=90°∴AD⊥EF28.已知:如图,ACBC于C,DEAC于E,ADAB于A,BC=AE.若AB=5,求AD的ACBDEFAEBDCF长?∵AD⊥AB∴∠BAC=∠ADE又∵AC⊥BC于C,DE⊥AC于E根据三角形角度之和等于180度∴∠ABC=∠DAE∵BC=AE,△ABC≌△DAE(ASA)∴AD=AB=529.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵AE=AB,∠EAC=∠BAF,AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,