第2-2章应变片式传感器金属丝式应变片.1)、应变效应2)、应变片的基本结构3)、应变片的主要特性4)、温度误差与补偿不可忽略金属箔式应变片.测量电路:电桥原理.应用优点:①精度高,测量范围广②频率响应特性较好③结构简单,尺寸小,重量轻④可在高(低)温、高速、高压、强烈振动、强磁场及核辐射和化学腐蚀等恶劣条件下正常工作⑤易于实现小型化、固态化⑥价格低廉,品种多样,便于选择一、金属应变片式传感器金属应变片式传感器的核心元件是金属应变片,它可将试件上的应变变化转换成电阻变化。缺点:具有非线性,输出信号微弱,抗干扰能力较差,因此信号线需要采取屏蔽措施;只能测量一点或应变栅范围内的平均应变,不能显示应力场中应力梯度的变化等;不能用于过高温度场合下的测量。+-DC+6V+RA实验一因为:金属导体或半导体的电阻与其电阻率及几何尺寸(长度、面积)有关,当其受到外力作用时,这些参数发生变化,因而引起其的电阻的变化,进而引起电流的变化。原理:金属导体或半导体在受到外力作用时,会产生相应的应变,其电阻也将随之发生变化。K电流:小大施加力F?RK接通时安培表指示安培表变化电阻:大—小应变片的基本结构电阻应变片式传感器是目前用于测量力、力矩、压力、加速度、质量等参数最广泛的传感器之一。其基本结构与组成如左图示意。电阻丝(敏感栅)—转换元件基底与面胶—中间介质和绝缘作用盖层引线--连接测量导线之用主要特性灵敏度系数.物理意义:单位应变所引起的电阻相对变化.横向效应机械滞后.零点漂移和蠕变.应变极限.动态响应特性.(1)灵敏度系数金属应变丝的电阻相对变化与它所感受的应变之间具有线性关系,用灵敏度系数KS表示。当金属丝做成应变片后,其电阻—应变特性,与金属单丝情况不同。因此,须用实验方法对应变片的电阻—应变特性重新测定。实验表明,金属应变片的电阻相对变化与应变ε在很宽的范围内均为线性关系。即K为金属应变片的灵敏系数。注意,K是在试件受一维应力作用,应变片的轴向与主应力方向一致,且试件材料的泊松比为0.285的钢材时测得的。测量结果表明,应变片的灵敏系数K恒小于线材的灵敏系数KS。原因:胶层传递变形失真,横向效应也是一个不可忽视的因素。KRRRRK丝绕式应变片敏感栅半圆弧形部分dldθθ(2)横向效应金属应变片由于敏感栅的两端为半圆弧形的横栅,测量应变时,构件的轴向应变ε使敏感栅电阻发生变化,其横向应变εr也将使敏感栅半圆弧部分的电阻发生变化(除了ε起作用外),应变片的这种既受轴向应变影响,又受横向应变影响而引起电阻变化的现象称为横向效应。图为应变片敏感栅半圆弧部分的形状。沿轴向应变为ε,沿横向应变为εr。(3)机械滞后应变片粘贴在被测试件上,当温度恒定时,其加载特性与卸载特性不重合,即为机械滞后。产生原因:应变片在承受机械应变后,其内部会产生残余变形,使敏感栅电阻发生少量不可逆变化;在制造或粘贴应变片时,如果敏感栅受到不适当的变形或者粘结剂固化不充分。ΔεΔε1机械应变ε卸载加载指示应变εi应变片的机械滞后机械滞后值还与应变片所承受的应变量有关,加载时的机械应变愈大,卸载时的滞后也愈大。所以,通常在实验之前应将试件预先加、卸载若干次,以减少因机械滞后所产生的实验误差。(4)零点漂移和蠕变对于粘贴好的应变片,当温度恒定时,不承受应变时,其电阻值随时间增加而变化的特性,称为应变片的零点漂移产生原因:敏感栅通电后的温度效应;应变片的内应力逐渐变化;粘结剂固化不充分等。如果在一定温度下,使应变片承受恒定的机械应变,其电阻值随时间增加而变化的特性称为蠕变。一般蠕变的方向与原应变量的方向相反。产生原因:由于胶层之间发生“滑动”,使力传到敏感栅的应变量逐渐减少。这是两项衡量应变片特性对时间稳定性的指标,在长时间测量中其意义更为突出。实际上,蠕变中包含零漂,它是一个特例。(5)应变极限在一定温度下,应变片的指示应变对测试值的真实应变的相对误差不超过规定范围(一般为10%)时的最大真实应变值。在图中,真实应变是由于工作温度变化或承受机械载荷,在被测试件内产生应力(包括机械应力和热应力)时所引起的表面应变。εlim真实应变εz指示应变εi应变片的应变极限±10%1主要因素:粘结剂和基底材料传递变形的性能及应变片的安装质量。制造与安装应变片时,应选用抗剪强度较高的粘结剂和基底材料。基底和粘结剂的厚度不宜过大,并应经过适当的固化处理,才能获得较高的应变极限。(6)动态特性当被测应变值随时间变化的频率很高时,需考虑应变片的动态特性。因应变片基底和粘贴胶层很薄,构件的应变波传到应变片的时间很短(估计约0.2μs),故只需考虑应变沿应变片轴向传播时的动态响应。设一频率为f的正弦应变波在构件中以速度v沿应变片栅长方向传播,在某一瞬时t,应变量沿构件分布如图所示。应变片对应变波的动态响应ε0应变片ε1lx1λεx4、温度误差及其补偿(1)温度误差用作测量应变的金属应变片,希望其阻值仅随应变变化,而不受其它因素的影响。实际上应变片的阻值受环境温度(包括被测试件的温度)影响很大。由于环境温度变化引起的电阻变化与试件应变所造成的电阻变化几乎有相同的数量级,从而产生很大的测量误差,称为应变片的温度误差,又称热输出。因环境温度改变而引起电阻变化的两个主要因素:应变片的电阻丝(敏感栅)具有一定温度系数;电阻丝材料与测试材料的线膨胀系数不同。电桥补偿法如图,电桥输出电压与桥臂参数的关系为式中A——由桥臂电阻和电源电压决定的常数。3241RRRRAUSCUSCR2R4R1R3E桥路补偿法由上式可知,当R3、R4为常数时,Rl和R2对输出电压的作用方向相反。利用这个基本特性可实现对温度的补偿,并且补偿效果较好,这是最常用的补偿方法之一。测量应变时,使用两个应变片,一片贴在被测试件的表面,图中R1称为工作应变片。另一片贴在与被测试件材料相同的补偿块上,图中R2,称为补偿应变片。在工作过程中补偿块不承受应变,仅随温度发生变形。由于R1与R2接入电桥相邻臂上,造成ΔR1t与ΔR2t相同,根据电桥理论可知,其输出电压USC与温度无关。当工作应变片感受应变时,电桥将产生相应输出电压。补偿应变片粘贴示意图R1R2当被测试件不承受应变时,R1和R2处于同一温度场,调整电桥参数,可使电桥输出电压为零,即上式中可以选择R1=R2=R及R3=R4=R′。当温度升高或降低时,若ΔR1t=ΔR2t,即两个应变片的热输出相等,由上式可知电桥的输出电压为零,即03241RRRRAUSC322411RRRRRRAUttSCRRRRRRAtt21RRRRRRRRAtt21021ttRRRA=若此时有应变作用,只会引起电阻R1发生变化,R2不承受应变。故由前式可得输出电压为由上式可知,电桥输出电压只与应变ε有关,与温度无关。为达到完全补偿,需满足下列三个条件:①R1和R2须属于同一批号的,即它们的电阻温度系数α、线膨胀系数β、应变灵敏系数K都相同,两片的初始电阻值也要求相同;②用于粘贴补偿片的构件和粘贴工作片的试件二者材料必须相同,即要求两者线膨胀系数相等;③两应变片处于同一温度环境中。RKRARRRRKRRRAUttSC3224111此方法简单易行,能在较大温度范围内进行补偿。缺点是三个条件不易满足,尤其是条件③。在某些测试条件下,温度场梯度较大,R1和R2很难处于相同温度点。原理:它是利用照相制版或光刻腐蚀法将电阻箔材在绝缘基底上制成各种图形的应变片;优点:敏感栅尺寸准确,线条均匀;其弯头横向效应可以忽略;可通过较大的电流;散热性好,寿命长;生产效率高;(三)测量电路应变片将应变的变化转换成电阻相对变化ΔR/R,要把电阻的变化转换成电压或电流的变化,才能用电测仪表进行测量。电阻应变片的测量线路多采用交流电桥(配交流放大器),其原理和直流电桥相似。直流电桥比较简单,因此首先分析直流电桥,如图所示。当电源E为电势源,其内阻为零时,可求出检流计中流过的电流Ig与电桥各参数之间的关系为R2R4R1R3E电桥线路原理图RgACDIgB(四)应变式传感器应用金属应变片,除了测定试件应力、应变外,还制造成多种应变式传感器用来测定力、扭矩、加速度、压力等其它物理量。应变式传感器包括两个部分:一是弹性敏感元件,利用它将被测物理量(如力、扭矩、加速度、压力等)转换为弹性体的应变值;另一个是应变片作为转换元件将应变转换为电阻的变化。柱力式传感器梁力式传感器应变式压力传感器应变式加速度传感器1、柱力式传感器圆柱式力传感器的弹性元件分为实心和空心两种。柱式力传感器-ε2+ε1截面积SFFF面积S-ε1+ε2b)a)在轴向布置一个或几个应变片,在圆周方向布置同样数目的应变片,后者取符号相反的横向应变,从而构成了差动对。由于应变片沿圆周方向分布,所以非轴向载荷分量被补偿,在与轴线任意夹角的α方向,其应变为:2cos1121ε1——沿轴向的应变;μ——弹性元件的泊松比。当α=0时SEF==1当α=90˚时SEF=-=-=12E:弹性元件的杨氏模量2、梁力式传感器等强度梁弹性元件是一种特殊形式的悬臂梁。梁的固定端宽度为b0,自由端宽度为b,梁长为L,粱厚为h。LR1R3R2R4xFhb等强度梁弹性元件b0R4力F作用于梁端三角形顶点上,梁内各断面产生的应力相等,故在对L方向上粘贴应变片位置要求不严。横截面梁双空梁S形弹性元件P(b)(a)应变式压力传感器3、应变式压力传感器测量气体或液体压力的薄板式传感器,如图所示。当气体或液体压力作用在薄板承压面上时,薄板变形,粘贴在另一面的电阻应变片随之变形,并改变阻值。这时测量电路中电桥平衡被破坏,产生输出电压。圆形薄板固定形式:采用嵌固形式,如图(a)或与传感器外壳作成一体,如图(b)。应变片4、应变式加速度传感器由端部固定并带有惯性质量块m的悬臂梁及贴在梁根部的应变片、基座及外壳等组成。是一种惯性式传感器。测量时,根据所测振动体加速度的方向,把传感器固定在被测部位。当被测点的加速度沿图中箭头所示方向L应变片质量块m弹簧片外壳基座a应变式加速度传感器时,固定在被测部位。当被测点的加速度沿图中箭头所示方向时,悬臂梁自由端受惯性力F=ma的作用,质量块向箭头a相反的方向相对于基座运动,使梁发生弯曲变形,应变片电阻也发生变化,产生输出信号,输出信号大小与加速度成正比。