谷氨酸谷氨酸,是一种酸性氨基酸。分子内含两个羧基,化学名称为α-氨基戊二酸。谷氨酸是里索逊于1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。谷氨酸发酵的历史1866年德国化学家里豪森利用硫酸水解小麦面筋,分离到一种酸性氨基酸,依据原料的取材,将此氨基酸命名为谷氨酸1872年赫拉西维茨等用酪蛋白也制取了谷氨酸1890年沃尔夫利用α-酮戊酸经溴化后合成DL-谷氨酸。日本池田菊苗教授在探讨海带汁的鲜味时,提取了谷氨酸,并在1908年开始制造商品味之素1910年日本味之素公司用水解法生产谷氨酸。1936年美国从甜菜废液(司蒂芬废液)中提取谷氨酸。我国氨基酸发酵的发展我国氨基酸生产最早在1922年用酸法水解面筋生产谷氨酸钠即味精,在上海开办了天厨味精厂,该味精的制造方法曾向美、英、法申请专利,并取得了专利权。并先后建立了沈阳味精厂、青岛味精厂和天津味精厂,规模均很小,1949年全国味精总产量不到500吨。1965年发酵法生产味精取得成功,带动了其他氨基酸的研究开发。1965年以后,我国味精生产全部采用以淀粉质或糖蜜为原料的微生物发酵工艺,大大的促进了生产的发展,到1985年全国味精生产企业达到140家。随着酶制剂的应用和生产工艺及装备的改进,技术水平不断提高,进一步推动了味精生产的快速发展。发酵流程菌种国内各味精厂曾使用过的菌种:天津短杆菌钝齿棒杆菌北京棒杆菌及它们的突变株。目前用于谷氨酸发酵的菌种有谷氨酸棒杆菌、乳糖发酵短杆菌、黄色短杆菌、嗜氨小杆菌、球形节杆菌。我国常使用的生产菌株是北京棒杆菌AS1.299、北京棒杆菌D110、钝齿棒杆菌A51.542、棒杆菌S-914和黄色短杆菌T6~T13等。发酵机制谷氨酸的生物合成途径大致是:葡萄糖经EMP途径或HMP途经生成丙酮酸,再氧化成乙酰辅酶A,然后进入TCA,再通过乙醛酸循环、CO2固定作用,生成a-酮戊二酸,a-酮戊二酸在谷氨酸脱氢酶的催化及有NH4+存在的条件下生成谷氨酸在微生物的代谢中,谷氨酸比天冬氨酸优先合成。谷氨酸合成过量时,谷氨酸抑制谷氨酸脱氢酶的合成,使代谢转向合成天冬氨酸;天冬氨酸合成过量后,反馈抑制磷酸烯醇丙酮酸羧化酶的活力,停止草酰乙酸的合成。所以,在正常情况下,谷氨酸并不积累。代谢控制分解代谢降解物阻遏1、分解代谢降解物阻遏2、解除分解代谢降解物阻遏的技术与方法发酵条件控制:加入安慰诱导物:如Lac结构类似物IPTG抗降解物阻遏突变株的选育:加入高浓度底物筛选仍产生大量目的产物的突变株反馈调节作用1、终产物反馈阻遏和反馈抑制野生型菌株“A”氨基酸合成操纵子模型ARPOA结构基因无活性repressorARNA聚合酶反馈阻遏活性A合成酶系(E1,E2…)A反馈抑制超过生理需要量野生型菌株酶合成水平的反馈阻遏反馈阻遏与反馈抑制比较反馈阻遏反馈抑制控制对象酶合成酶活性控制量终产物浓度终产物浓度控制水平转录水平酶构象变化控制装置终产物与阻遏蛋白亲和终产物与控制酶构象的部位亲和控制装置的动作阻遏蛋白与操纵子基因结合,不转录mRNA酶构型变化,活性中心失活形成控制开关控制酶活性大小控制反应迟缓,粗控制迅速,精控制细胞经济超高效益高效益2、解除反馈阻遏、反馈抑制突变株的选育野生型菌株诱变解除反馈调节突变株AR-或AO-AR-+AO-酶基因突变解除反馈调节突变株可以大量积累末端产物筛选方法:解除Lys反馈调节突变株筛选野生型菌株诱变菌细胞正常反馈调节型解除反馈调节突变型谷氨酸的生物合成包括糖酵解作用(glycolysis,EMP途径)戊糖磷酸途径(pentosephosphatepathway,HMP途径)三羧酸循环(tricarboxylicacidcycle)乙醛酸循环(glyoxylatecycle)丙酮酸羧化支路(CO2固定反应)等谷氨酸发酵的代谢途径生成的丙酮酸,一部分在丙酮酸脱氢酶系的作用下氧化脱羧生成乙酰CoA,另一部分经CO2固定反应生成草酰乙酸或苹果酸,催化CO2固定反应的酶有丙酮酸羧化酶、苹果酸酶和磷酸烯醇式丙酮酸羧化酶。草酰乙酸与乙酰CoA在柠檬酸合成酶催化作用下,缩合成柠檬酸,进入三羧酸循环,柠檬酸在顺乌头酸酶的作用下生成异柠檬酸,异柠檬酸再在异柠檬酸脱氢酶的作用下生成α-酮戊二酸,α-酮戊二酸是谷氨酸合成的直接前体。α-酮戊二酸在谷氨酸脱氢酶作用下经还原氨基化反应生成谷氨酸CO2固定酶系活力强Citratesynthase,Aconitase,ICDH,GDH酶活力强乙醛酸循环弱异柠檬酸裂解酶活力欠缺或微弱α-酮戊二酸氧化能力缺失或微弱谷氨酸脱氢酶能力强控制谷氨酸合成的重要措施乙醛酸循环的作用谷氨酸发酵的代谢途径乙醛酸循环途径可看作三羧酸循环的支路和中间产物的补给途径在菌体生长期之后,进入谷氨酸生成期,为了大量生成、积累谷氨酸,最好没有异柠檬酸裂解酶催化反应,封闭乙醛酸循环优先合成谷氨酸比天冬氨酸优先合成,谷氨酸合成过量后,就会抑制和阻遏自身的合成途径,使代谢转向合成天冬氨酸,天冬氨酸合成过量后,反馈抑制磷酸烯醇丙酮酸羧化酶的活力,停止草酰乙酸的合成。所以,在正常情况下,谷氨酸并不积累。柠檬酸合成酶的调节柠檬酸合成酶是三羧酸循环的关键酶,除受能荷调节外,还受谷氨酸的反馈阻遏和顺乌头酸的反馈抑制α-酮戊二酸脱氢酶的调节在谷氨酸产生菌中,α-酮戊二酸脱氢酶活性微弱谷氨酸脱氢酶的调节谷氨酸对谷氨酸脱氢酶存在着反馈抑制和反馈阻遏α-酮戊二酸合成后由于α-酮戊二酸脱氢酶活性微弱,谷氨酸脱氢酶的活力很强,故优先合成谷氨酸Glc丙酮酸草酰乙酸CO2天门冬氨酸(Asp)AC-coACO2羧化酶柠檬酸顺乌头酸异柠檬酸α-酮戊二酸Glu反馈抑制谷氨酸脱氢酶α-酮戊二酸脱氢酶合成酶反馈阻遏Glu产生菌主要生理生化特性需氧,生物素缺陷型bio-,有乙醛酸循环,羧化酶活性强(bio作为辅酶)柠檬酸、异柠檬酸、谷氨酸脱氢酶活性高,Glu合成中存在正常反馈阻遏和反馈抑制。菌体细胞膜通透性差,不利于Glu胞外分泌。二、生物素对代谢的调控作用生物素对CO2固定反应的影响生物素是丙酮酸羧化酶的辅酶,参与CO2固定反应,据报道,生物素大过量时(100g/L以上),CO2固定反应可提高30%。生物素对糖代谢速率的影响生物素充足条件下,丙酮酸以后的氧化活性虽然也有提高,但由于糖降解速率显著提高,打破了糖降解速率与丙酮酸氧化速率之间的平衡,丙酮酸趋于生成乳酸的反应,因而会引起乳酸的溢出生物素对乙醛酸循环的影响乙醛酸循环的关键酶异柠檬酸裂解酶受葡萄糖、琥珀酸阻遏,为醋酸所诱导。在低浓度生物素条件下,因琥珀酸氧化能力降低而积累的琥珀酸就会反馈抑制该酶的活性,并阻遏该酶的合成,乙醛酸循环基本上是封闭的,代谢流向异柠檬酸→α-酮戊二酸→谷氨酸的方向高效率地移动。生物素控制磷脂的合成使用生物素缺陷型菌株进行谷氨酸发酵,通过限制发酵培养基中生物素的浓度控制脂肪酸生物合成,从而控制磷脂的合成作用机制:生物素作为催化脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与了脂肪酸的合成,进而影响磷脂的合成。当磷脂合成减少到正常量的一半左右时,细胞变形,谷氨酸向膜外漏出,积累于发酵液中控制生物素添加量使菌种生产Glu高浓度bio增强羧化酶活性,促进羧化反应利于Glu合成。低浓度bio降低裂解酶活性,使菌体生长后关闭乙醛酸循环,使底物流向Glu合成,低浓度bio使膜磷脂合成缺陷,增加膜通透性,利于Glu胞外分泌,解除反馈调节,利于Glu合成并大量积累。添加亚适量,5-10μg/L培养基,生产Glu培养前期,bio充足,存在乙醛酸循环,中间物质和能量充足,长细胞,膜磷脂合成正常,正常反馈调节,不积累Glu,细胞形态正常。8hrGlu非积累型细胞Glu积累型细胞培养中后期,bio浓度渐低,乙醛酸途径减弱直至关闭,膜磷脂合成缺陷,膜透性增强,分泌Glu,解除反馈调节,大量积累Glu,细胞形态异常,未溶解。谷氨酸是怎么积累的?谷氨酸产生菌大多为生物素缺陷型,谷氨酸发酵时通过控制生物素亚适量,使最后一代细菌细胞变形、拉长,改变了细胞膜的通透性,引起代谢失调,使谷氨酸得以积累。谷氨酸高产菌株丧失或仅有微弱的a-酮戊二酸脱氢酶活力,使a-酮戊二酸不能继续氧化;CO2固定反应的能力强,使四碳二羧酸全部是由CO2固定反应提供,而不走乙醛酸循环,以提高对糖的利用率;谷氨酸脱氢酶的活力很强,并丧失谷氨酸对谷氨酸脱氢酶的反馈抑制和反馈阻遏.同时NADPH2再氧化能力弱,这样就使a-酮戊二酸到琥珀酸的过程受阻,在有过量铵离子存在的条件下,a-酮戊二酸经氧化还原共遏氨基化反应而生成谷氨酸,生成的谷氨酸不形成蛋白质,而分泌泄漏于菌体外,谷氨酸产生菌不利用体外的谷氨酸,谷氨酸成为最终产物。菌种的定向选育改变细胞膜的通透性:生物素(乙酰CoA羧化酶的辅酶)营养缺陷型株丧失脂肪酸合成酶的油酸缺陷型;丧失a-磷酸甘油酶的甘油缺陷型。选育温度敏感突变株:例:使用典型的温度敏感突变株TS-88生产谷氨酸时,通过控制发酵条件,在生长适当阶段将发酵温度由30℃提高到40℃,可在生物素含量为33ug/L,含糖3.6%的甜菜糖蜜发酵培养基中,产生20g/L谷氨酸,对糖转化率55%。